• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Driving Cycle Generation Using Statistical Analysis and Markov Chains

Torp, Emil, Önnegren, Patrik January 2013 (has links)
A driving cycle is a velocity profile over time. Driving cycles can be used for environmental classification of cars and to evaluate vehicle performance. The benefit by using stochastic driving cycles instead of predefined driving cycles, i.e. the New European Driving Cycle, is for instance that the risk of cycle beating is reduced. Different methods to generate stochastic driving cycles based on real-world data have been used around the world, but the representativeness of the generated driving cycles has been difficult to ensure. The possibility to generate stochastic driving cycles that captures specific features from a set of real-world driving cycles is studied. Data from more than 500 real-world trips has been processed and categorized. The driving cycles are merged into several transition probability matrices (TPMs), where each element corresponds to a specific state defined by its velocity and acceleration. The TPMs are used with Markov chain theory to generate stochastic driving cycles. The driving cycles are validated using percentile limits on a set of characteristic variables, that are obtained from statistical analysis of real-world driving cycles. The distribution of the generated driving cycles is investigated and compared to real-world driving cycles distribution. The generated driving cycles proves to represent the original set of real-world driving cycles in terms of key variables determined through statistical analysis. Four different methods are used to determine which statistical variables that describes the features of the provided driving cycles. Two of the methods uses regression analysis. Hierarchical clustering of statistical variables is proposed as a third alternative, and the last method combines the cluster analysis with the regression analysis. The entire process is automated and a graphical user interface is developed in Matlab to facilitate the use of the software. / En körcykel är en beskriving av hur hastigheten för ett fordon ändras under en körning. Körcykler används bland annat till att miljöklassa bilar och för att utvärdera fordonsprestanda. Olika metoder för att generera stokastiska körcykler baserade på verklig data har använts runt om i världen, men det har varit svårt att efterlikna naturliga körcykler. Möjligheten att generera stokastiska körcykler som representerar en uppsättning naturliga körcykler studeras. Data från över 500 körcykler bearbetas och kategoriseras. Dessa används för att skapa överergångsmatriser där varje element motsvarar ett visst tillstånd, med hastighet och acceleration som tillståndsvariabler. Matrisen tillsammans med teorin om Markovkedjor används för att generera stokastiska körcykler. De genererade körcyklerna valideras med hjälp percentilgränser för ett antal karaktäristiska variabler som beräknats för de naturliga körcyklerna. Hastighets- och accelerationsfördelningen hos de genererade körcyklerna studeras och jämförs med de naturliga körcyklerna för att säkerställa att de är representativa. Statistiska egenskaper jämfördes och de genererade körcyklerna visade sig likna den ursprungliga uppsättningen körcykler. Fyra olika metoder används för att bestämma vilka statistiska variabler som beskriver de naturliga körcyklerna. Två av metoderna använder regressionsanalys. Hierarkisk klustring av statistiska variabler föreslås som ett tredje alternativ. Den sista metoden kombinerar klusteranalysen med regressionsanalysen. Hela processen är automatiserad och ett grafiskt användargränssnitt har utvecklats i Matlab för att underlätta användningen av programmet.
2

The tractive performance of a friction-based prototype track

Yu, Tingmin 19 October 2006 (has links)
In recent years, the interest in the design, construction and utilization of rubber tracks for agriculture and earth moving machinery has increased considerably. The development of such types of tracks was initiated by the efforts to invent a more environmentally friendly vehicle-terrain system. These tracks are also the result of the continuous effort to develop more cost-effective traction systems. A rubber-surfaced and friction-based prototype track was developed and mounted on the patented modification of a new Allis Chalmers four wheel drive tractor. The track is propelled by smooth pneumatic tyres by means of rubber-rubber friction and the tractive effort of the track is mainly generated by soil-rubber friction between the rubber surface of the track elements and terrain. The experimental track layer tractor, based on an Allis Chalmers 8070 tractor (141 kW) was tested on concrete and on cultivated sandy loam soil at 7.8%; 13% and 21% soil water content. The contact pressure and the tangential force on an instrumented track element, as well as the total torque input to one track, was simultaneously recorded during the drawbar pull-slip tests. Soil characteristics for pressure-sinkage and friction-displacement were obtained from the field tests by using an instrumented linear shear and soil sinkage device. By applying the approach based on the classical bevameter technique, analytical methods were implemented for modelling the traction performance of the prototype track system. Different possible pressure distribution profiles under the tracks were considered and compared to the recorded data. Two possible traction models were proposed, one constant pressure model, for minimal inward track deflection and the other a flexible track model with inward deflection and a higher contact pressure at both the front free-wheeling and rear driving tyres. For both models, the traction force was mainly generated by rubber-soil friction and adhesion with limited influence by soil shear. For individual track elements, close agreement between the measured and predicted contact pressure and traction force was observed based on the flexible track model. The recorded and calculated values of the coefficient of traction based on the summation of the traction force for the series of track elements were comparable to the values predicted from modelling. However, the measured values of drawbar pull coefficient were considerably lower than the predicted values, largely caused by internal track friction in addition to energy dissipated by soil compaction. The tractive efficiency for soft surface was also unacceptably low, probably due to the high internal track friction and the low travel speeds applied for the tests. The research undertaken identified and confirmed a model to be used to predict contact pressure and tangential stresses for a single track element. It was capable of predicting the tractive performance for different possible contact pressure values. / Thesis (PhD (Argricultural Engineering))--University of Pretoria, 2007. / Civil Engineering / Unrestricted
3

Analysis of Soil-Tire Interaction Using a Two-Dimensional Finite Element-Discrete Element Method / 2次元有限要素-離散要素法による土-タイヤ相互作用解析

Nishiyama, Kenta 25 November 2019 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(農学) / 乙第13294号 / 論農博第2877号 / 新制||農||1073(附属図書館) / 学位論文||R1||N5239(農学部図書室) / (主査)教授 清水 浩, 准教授 中嶋 洋, 教授 飯田 訓久 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
4

Experimental and Modeling of Pneumatic Tire Performance on Ice

Jimenez, Emilio 23 April 2018 (has links)
The tire-ice interaction is a highly complex phenomenon, which has a direct influence on the overall performance of the pneumatic tire. From tire-terrain interaction dynamics, it is evident that icy road conditions and tire operational parameters play a vital role in determining the overall performance of the vehicle. With the reduction of traction available at the surface in icy conditions, the dynamics of the vehicle becomes more unpredictable, as the system can become unstable. In order to design an appropriate safety system, the tire-ice interaction must be closely investigated. Since the tire is the part of the vehicle that is in direct contact with the terrain during operation, it is critical to have an in-depth understanding of the contact mechanics at the contact patch. This study has led to the development and validation of an existing tire-ice model to further improve the understanding of the contact phenomena at the tire-ice interface. Experimental investigations led to a novel measurement technique in order to validate the semi-empirical based tire-ice contact model. The Advanced Tire-Ice Interface Model serves to simulate the temperature rise at the contact patch based on the pressure distribution in the contact patch, thermal properties of the tread compound and of the ice surface. Since its initial development, the advanced model is now capable of simulating the thin water film created from the melted ice, the prediction of tractive performance, the estimation of the viscous friction due to the water layer, and the influence of braking operations including the locked wheel condition. Experimental studies, carried out at the Terramechanics, Multibody, and Vehicle Systems (TMVS) Laboratory, were performed on the Terramechanics Rig. The investigation included measuring the bulk temperature distribution at the contact patch in order to validate the temperature rise simulations of the original Tire-Ice Model. The tractive performance of a P225/60R16 97S Standard Reference Test Tire and a 235/55R-19 Pirelli Scorpion Verde All-Season Plus XL were also investigated during this study. A design of experiment was prepared to capture the tire tractive performance under various controlled operating conditions. / Ph. D. / Icy road conditions and tire performance play a vital role in determining the overall performance of a vehicle. With the reduction of traction available at the surface in icy conditions, the vehicle becomes more unpredictable and can become uncontrollable. In order to design an appropriate safety system, the tire-ice interaction must be closely investigated. This research aims at enhancing the understanding of the tire-ice contact interaction at the contact patch through modeling and experimental studies for a pneumatic tire traversing over solid ice. Prior work in the laboratory produced a Tire-Ice Model (TIM) with the purpose of estimating the friction at the tire-ice interface. The current work builds on that study, resulting in the Advanced Tire-Ice Interface Model (ATIIM). This model predicts the temperature rise at the tire-ice interface based on the measured pressure distribution and the thermal properties of the tire and of the ice surface. This model allows a more thorough investigation of the tire-ice interface, being capable of predicting the height of the thin water film created from the melted ice, the prediction of tractive performance of the tire, the estimation of the viscous friction due to the water layer at the contact interface, and the influence of braking operations, including the locked wheel (skid) condition. Experimental studies were carried out at Terramechanics, Multibody, and Vehicle Systems (TMVS) Laboratory on the Terramechanics Rig. The experimental investigation included measuring the temperature at various points at the tire-ice interface in order to compare the temperature rise predicted using the ATIIM. Furthermore, the tractive performance of the tire was also investigated by examining different conditions of vertical tire load, tire inflation pressure, and ice surface temperatures as well as various steering configurations set by the user. In addition to investigating the performance at the tire-ice interface, a vehicle model in which the front wheels are considered as one (and the same for the rear wheels), often referred to as the bicycle model, is studied while traveling over smooth ice. To ensure the accuracy of the vehicle simulation, the tire model chosen must account for the actual conditions in which the model will operate. In this study, the ATIIM is incorporated in empirical tire models commonly used in industry and used in conjunction with a vehicle model to accurately predict the behavior of the vehicle when operating on smooth ice.
5

Systematic Tire Testing and Model Parameterization for Tire Traction on Soft Soil

He, Rui 30 January 2020 (has links)
Tire performance over soft soil influences the performance of off-road vehicles on soft soil, as the tire is the only force transmitting element between the off-road vehicles and soil during the vehicle operation. One aspect of the tire performance over soft soil is the tire tractive performance on soft soil, and it attracts the attention of vehicle and geotechnical engineers. The vehicle engineer is interested in the tire tractive performance on soft soil because it is related to vehicle mobility and energy efficiency; the geotechnical engineer is concerned about the soil compaction, brought about by the tire traffic, which accompanies the tire tractive performance on soft soil. In order to improve the vehicle mobility and energy efficiency over soft soil and mitigate the soil compaction, it's essential to develop an in-depth understanding of tire tractive performance on soft soil. This study has enhanced the understanding of tire tractive performance on soft soil and promoted the development of terramechanics and tire model parameterization method through experimental tests. The experimental tests consisted of static tire deflection tests, static tire-soil tests, soil properties tests, and dynamic tire-soil tests. The series of tests (test program) presented herein produced parameterization and validation data that can be used in tire off-road traction dynamics modeling and terramechanics modeling. The 225/60R16 97S Uniroyal (Michelin) Standard Reference Test Tire (SRTT) and loamy sand were chosen to be studied in the test program. The tests included the quantification or/and measurement of soil properties of the test soil, pre-traffic soil condition, the pressure distribution in the tire contact patch, tire off-road tractive performance, and post-traffic soil compaction. The influence of operational parameters, e.g., tire inflation pressure, tire normal load, tire slip ratio, initial soil compaction, or the number of passes, on the measurement data of tire performance parameters or soil response parameters was also analyzed. New methods of the rolling radius estimation for a tire on soft soil and of the 3-D rut reconstruction were developed. A multi-pass effect phenomenon, different from any previously observed phenomenon in the available existing literature, was discovered. The test data was fed into optimization programs for the parameterization of the Bekker's model, a modified Bekker's model, the Magic Formula tire model, and a bulk density estimation model. The modified Bekker's model accounts for the slip sinkage effect which the original Bekker's pressure-sinkage model doesn't. The Magic Formula tire model was adapted to account for the combined influence of tire inflation pressure and initial soil compaction on the tire tractive performance and validated by the test data. The parameterization methods presented herein are new effective terramechanics model parameterization methods, can capture tire-soil interaction which the conventional parameterization methods such as the plate-sinkage test and shear test (not using a tire as the shear tool) cannot sufficiently, and hence can be used to develop tire off-road dynamics models that are heavily based on terramechanics models. This study has been partially supported by the U.S. Army Engineer Research and Development Center (ERDC) and by the Terramechanics, Multibody, and Vehicle (TMVS) Laboratory at Virginia Tech. / Doctor of Philosophy / Big differences exist between a tire moving in on-road conditions, such as asphalt lanes, and a tire moving in off-road conditions, such as soft soil. For example, for passenger cars commonly driven on asphalt lanes, normally, the tire inflation pressure is suggested to be between 30 and 35 psi; very low inflation pressure is also not suggested. By contrast, for off-road vehicles operated on soft soil, low inflation pressure is recommended for their tires; the inflation pressure of a tractor tire can be as low as 12 psi, for the sake of low post-traffic soil compaction and better tire traction. Besides, unlike the research on tire on-road dynamics, the research on off-road dynamics is still immature, while the physics behind the off-road dynamics could be more complex than the on-road dynamics. In this dissertation, experimental tests were completed to study the factors influencing tire tractive performance and soil behavior, and model parameterization methods were developed for a better prediction of tire off-road dynamics models. Tire or vehicle manufacturers can use the research results or methods presented in this dissertation to offer suggestions for the tire or vehicle operation on soft soil in order to maximize the tractive performance and minimize the post-traffic soil compaction.
6

Prediction of mobility, handling, and tractive efficiency of wheeled off-road vehicles

Senatore, Carmine 25 May 2010 (has links)
Our society is heavily and intrinsically dependent on energy transformation and usage. In a world scenario where resources are being depleted while their demand is increasing, it is crucial to optimize every process. During the last decade the concept of energy efficiency has become a leitmotif in several fields and has directly influenced our everyday life: from light bulbs to airplane turbines, there has been a general shift from pure performance to better efficiency. In this vein, we focus on the mobility and tractive efficiency of off-road vehicles. These vehicles are adopted in military, agriculture, construction, exploration, recreation, and mining applications and are intended to operate on soft, deformable terrain. The performance of off-road vehicles is deeply influenced by the tire-soil interaction mechanism. Soft soil can drastically reduce the traction performance of tires up to the point of making motion impossible. In this study, a tire model able to predict the performance of rigid wheels and flexible tires is developed. The model follows a semi-empirical approach for steady-state conditions and predicts basic features, such as the drawbar pull, the driving torque and the lateral force, as well as complex behaviors, such as the slip-sinkage phenomenon and the multi-pass effect. The tractive efficiency of different tire-soil configurations is simulated and discussed. To investigate the handling and the traction efficiency, the tire model is implemented into a four-wheel vehicle model. Several tire geometries, vehicle configurations (FWD, RWD, AWD), soil types, and terrain profiles are considered to evaluate the performance under different simulation scenarios. The simulation environment represents an effective tool to realistically analyze the impact of tire parameters (size, inflation pressure) and torque distribution on the energy efficiency. It is verified that larger tires and decreased inflation pressure generally provide better traction and energy efficiency (under steady-state working conditions). The torque distribution strategy between the axles deeply affects the traction and the efficiency: the two variables can't clearly be maximized at the same time and a trade-off has to be found. / Ph. D.
7

Elektromechanická alternativa hydraulické lineární tahové jednotky / Electromechanical alternative of linear hydraulic tractive unit

Hammer, Jaroslav January 2008 (has links)
In this diploma thesis is accomplished description of existing condition of decorating linear tractive unit. Analysis of safety requirements for linear tractive unit is also accomplished. Eligible construction concept of frame of electromechanical linear tractive unit is chosen. Selection and calculation of ball screw and nut is made also with draft of its eligible support . Choose of eligible engine and clutch for gearing of engine torque from engine to the ball screw is done too. Further is designed eligible concept of gearing of the rotary motion of ball screw to straight motion of bottom pulley block, which now interacting with upper firm pulley block provides lifting of tensile rod with coulisse.
8

Modélisation avancée du contact pneu-chaussée pour l'étude des dégradations des chaussées en surface / Advanced Modeling of Tire-Pavement Contact to Investigate Pavement Surface Degradation

Manyo, Edem Yawo 14 February 2019 (has links)
L'apparition récente de nouveaux matériaux dans les structures de chaussée associée à une diminution de l'épaisseur des couches de surface et une augmentation du chargement des poids lourds et de leur fréquence de passage a entrainé de nouvelles pathologies de dégradation. Outre les problèmes d'orniérage bien connus, apparaissent désormais des fissures descendantes (top down cracking) ainsi que des problèmes de décohésion aux interfaces. Ces nouvelles pathologies entrainent des dépenses considérables sur l'ensemble du réseau (environ 15 milliards d'euros par an), particulièrement en zones urbanisées plus sujettes aux dégradations de surface et ne permettent pas d'estimer convenablement les durées de vie de la chaussée, le plus souvent surestimée dans les méthodes de dimensionnement actuelles. Ce travail de doctorat propose une nouvelle approche du contact pneu-chaussée permettant de mieux appréhender les contraintes principales et résiduelles dans une structure de chaussée bitumineuse. A l'aide d'un outil numérique rapide de calcul basé sur une approche semi-analytique (« Semi-Analytical Methods » (SAM)), la géométrie précise du pneumatique est intégrée afin d'obtenir une répartition de pression de contact ainsi qu'un cisaillement surfacique réelle sur la chaussée. Dans un premier temps, un modèle de contact roulant tractif élastique est implémenté pour des cas théoriques simples et validé par des résultats analytiques et numériques de la littérature. Ensuite, ce modèle est étendu pour prendre en compte le comportement élasto-plastique des corps en contact. Ce dernier est comparé à un résultat numérique basé sur la méthode des éléments finis issu de la littérature. Les résultats, pour une application contact pneu-chaussée, montrent une répartition non homogène des contraintes dans la structure et principalement dans les premiers centimètres sous la surface avec des niveaux beaucoup plus importants que peuvent le prédire les modèles actuels qui utilisent une charge uniformément répartie. La pression de contact est comparée aux mesures effectuées par un système nommé TekScan et les champs mécaniques en sous couches sont comparés à ceux d'Alizé-LCPC dans le cas d'une structure simple. Les cisaillements surfaciques sont déterminés dans le cas du roulement tractif. Une application est effectuée sur la modélisation des dégradations des chaussées en surface. Dans un premier temps, des analyses sur le comportement de la chaussée en surface sont effectuées pour une couche de béton bitumineux semi grenu (BBSG) semi-infinie supposée élastique, homogène sous conditions d'accélération, de freinage et de virage. Pour des études sur le top down cracking, des déformations et directions principales sont déterminées et analysées. Ensuite, le modèle de contact élasto-plastique est appliqué sur une couche semi-infinie de grave bitume GB3. Des déformations et contraintes résiduelles générées dans la structure sont déterminées en vue d'une analyse sur les ornières d'instabilité. Une fois validés, ces résultats permettront d'estimer plus fidèlement la durée de vie résiduelle des chaussées mais également de comprendre et d'éviter les mécanismes de dégradation en surface ou proche de la surface. / The recent appearance of new materials in road structures associated with surface layers thickness decreasing and the increasing of trucks loading and their passage frequency has led to new pathologies of degradation. In addition to the well-known rutting problems, top down cracking is now appearing as well as problems of decohesion at the interfaces. These new pathologies led to considerable expenditure on the entire network (around 15 billion euros per year), particularly in urbanized areas that are more prone to surface damage and do not make it possible to adequately estimate the lifetimes of the roadway, most often overestimated in current design methods. This doctoral work proposes a new approach of the tire-road contact allowing for better apprehend of the main and residual stresses in a bituminous pavement structure. Using a fast numerical tool based on a semi-analytical approach ("Semi-Analytical Methods" (SAM)), the precise geometry of the tire is integrated in order to obtain a real contact pressure distribution as well as surface shear on the pavement surface. Initially, an elastic tractive rolling contact model is implemented for simple theoretical cases and validated by analytical and numerical results from the literature.Then, this model is extended to take into account the elastoplastic behavior of the bodies in contact. This is compared to a numerical result based on the nite element method from the literature. The application for tire-pavement contact results, show a non-uniform distribution of stresses in the structure and mainly in the rst centimeters below the surface with much higher levels than can be predicted by current models that use a uniformly distributed load. The contact pressure is compared to the measurements made by a system called TekScan and the mechanical elds in sublayers are compared to those of Alizé-LCPC in the case of a simple structure. The surface shears are determined in the case of tractive rolling. An application is carried out on the modeling of surface pavement damage. Firstly, analyzes of the behavior of the surface pavement are carried out for a semi-innite semi-grit asphalt concrete layer supposed to be elastic, homogeneous under conditions of acceleration, braking and turning. For studies on top down cracking, principals deformations and directions are determined and analyzed. Then, the elastoplastic contact model is applied on a semi-innite asphalt agragate layer. Deformations and residuals stresses generated in the structure are determined for an analysis on the instability ruts. Once validated, these results will make it possible to more accurately estimate the residual life of pavements but also to understand and avoid surface or near surfacedegradation mechanisms.

Page generated in 0.0616 seconds