• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 34
  • 24
  • 23
  • 18
  • 17
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Implications of origin-destination distribution in freeway simulation /

Watson, James. January 2004 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2004. / Includes bibliographical references (leaves 121-125). Also available via World Wide Web.
22

The transition to low speed vehicles for intra-city travel

Larsen, Katherine Anne 12 February 2013 (has links)
A transition to low speed vehicles (LSVs), a federally-designated class of vehicles smaller, lighter and slower (limited to maximum speeds between 20 and 25 mph) than conventional automobiles, for intra-city travel offers several advantages. Their smaller size provides roadway space for other modes such as cycling and reduces the amount of land dedicated to vehicles. Their lower maximum speeds are more compatible with operation in populated areas where cars traveling at 30 mph prove deadly for pedestrians and people biking, and their energy usage and emissions are less than conventional automobiles. Communities such as Lincoln, CA, Peachtree City, GA, and those in the South Bay Cities and Western Riverside Councils of Governments in California recognize the benefits of using LSVs and actively provide infrastructure and programs to support their use. Considering the advantages of LSVs, this dissertation demonstrates potential ways to transition to LSVs and seeks to answer a question considered key to their adoption as the means of motorized travel in the city: Could LSVs also offer a travel time advantage? The basis for this seemingly paradoxical question is the observation that because of their smaller size, lower weight, and slower speed, more space- and operationally-efficient intersections, such as LSV-scaled roundabouts, overpasses and interchanges, are possible within the existing right-of-way to replace signalized intersections. The hypothesis that LSVs can offer comparable or better travel time compared to conventional automobiles assumes the removal of intersection delay will allow LSVs to make-up for their slower speeds. The methodology to test the hypothesis uses dynamic traffic assignment to compare average system, corridor and origin to destination travel times for conventional automobiles and LSVs in a subnetwork of Austin, Texas during transition periods when both vehicles are permitted and when only LSVs may be used for intra-city motorized travel. The findings indicate LSVs can offer similar and in some cases better average travel times than those for conventional automobiles, especially for the LSV-only network. However, careful planning is required during the transition stages when both vehicle types are in operation to maintain acceptable travel times for both conventional automobiles and LSVs. / text
23

Improvements and extensions of dynamic traffic assignment in transportation planning

Melson, Christopher Lucas 08 October 2013 (has links)
A comprehensive approach is conducted to better utilize dynamic traffic assignment (DTA) in transportation planning by investigating its role in: (1) high-order functions, (2) project evaluation, and (3) traffic assignment. A method is proposed to integrate DTA and the four-step planning model such that traffic assignment is conducted at the subnetwork level while the feedback process occurs at the regional level. By allowing interaction between the subnetwork and regional area, the method is shown to be more beneficial than previous integration structures. Additionally, DTA is applied to a case study involving the proposed urban rail system in Austin, TX. The case study showcases the benefits and capabilities of DTA when analyzing traffic impacts caused by transit rail facilities. Multiple equilibria are shown to arise in simulation-based DTA models due to simplified fundamental diagrams. Piecewise linear diagrams are introduced to eliminate unlikely equilibria. Game theory is also applied to DTA; it is shown that an equilibrium solution is guaranteed to exist for general networks in mixed strategies, and unrealistic equilibria are reduced using the trembling hand refinement. / text
24

On the modeling disrupted networks using dynamic traffic assignment

Liu, Ruoyu, active 2013 20 November 2013 (has links)
A traffic network can be disrupted by work zones and incidents. Calculating diversion rate is a core issue for estimating demand changes, which is needed to select a suitable work zone configuration and work schedule. An urban network can provide multiple alternative routes, so traffic assignment is the best tool to analyze diversion rates on network level and the local level. Compared with the results from static traffic assignment, dynamic traffic assignment predicts a higher network diversion rate in the morning peak period and off-peak period, a lower local diversion rate in the morning peak period. Additionally, travelers may benefit from knowing real-time traffic condition to avoid the traffic incident areas. Deploying variable message signs (VMSs) is one possible solution. One key issue is optimizing locations of VMSs. A planning model is created to solve the problem. The objective is minimize total system travel time. The link transmission model is used to evaluate the performance of the network, and bounded rational behavior is used to represent drivers' response to VMSs. A self-adapting genetic algorithm (GA) is formulated to solve the problem. This model selects the best locations to provide VMSs, typically places are that allow travelers to switch to alternative routes. Results show that adding more VMSs beyond a certain threshold level does not further reduce travel time. / text
25

Subnetwork analysis for dynamic traffic assignment : methodology and application

Gemar, Mason D. 10 February 2014 (has links)
Dynamic traffic assignment (DTA) can be used to model impacts of network modification scenarios, including traffic control plans (TCPs), on traffic flow. However, using DTA for modeling construction project impacts is limited by the computational time required to simulate entire roadway networks. DTA modeling of a portion of the larger network surrounding these work zones can decrease the overall run time. However, impacts are likely to extend beyond typical boundaries, and determining the proper extents to be analyzed is necessary. Therefore, a methodology for selecting an adequate portion to analyze using DTA, along with provision for properly analyzing the resultant subnetwork, is necessary to determine the magnitude of construction impacts. The primary objectives of this research center on evaluating subnetwork sizes to determine the appropriate extents required to analyze network modifications and developing a strategy to account for impacts extending beyond the subnetwork boundary. The first objective is accomplished through an in-depth review of subnetwork sizes relative to multiple impact scenarios. Three statistical measures are implemented to evaluate the adequacy of a chosen subnetwork relative to the derived impact scenarios based on an assessment of boundary demand. Ultimately, the root mean squared error is used successfully to provide a series of recommended subnetwork sizes associated with an array of possible impact scenarios. These recommendations are validated, and application of the proposed methodology demonstrated, using five scenarios selected from real-world network modifications observed in the field. When a subnetwork is not large enough and impacts to inbound trips pass beyond the boundary, there is a change in flow at this location that can be represented by a change in the demand assigned to the subnetwork at each entry point. As such, two strategies for adjusting the demand at subnetwork boundaries are implemented and evaluated. This includes use of results from static traffic assignment (STA) models to identify where flow changes occur, and implementation of a logit formulation to estimate demand adjustments based on differences in internal travel times between base and impact scenario models. Based on preliminary results, the logit method was selected for large-scale implementation and testing. In the end, an inconsistent performance of the logit method for full implementation highlights the limitations of the methodology as applied for this study. However, the results suggest that a refined strategy that builds on the foundation established could work more effectively and produce valuable subnetwork demand estimates in the future. This research is used to provide recommendations for selecting and analyzing subnetworks using DTA for an array of common impact scenarios involving network modifications. The tradeoffs between improved efficiency and reduced accuracy associated with using subnetworks are thoroughly demonstrated. It is shown that a considerable amount of computational time and space, as well as effort on the part of an analyst, can be saved. A number of limitations associated with subnetworks are also identified and discussed. The proposed methodology is implemented and evaluated using several software programs and as a result, a number of useful tools and software scripts are developed as part of the research. Ultimately, the valuable experience gained from performing an extensive review of subnetwork analysis using DTA can be used as a basis from which to develop future research initiatives. / text
26

Application of a subnetwork characterization methodology for dynamic traffic assignment

Bringardner, Jack William, 1989- 16 January 2015 (has links)
The focus of this dissertation is a methodology to select an appropriate subnetwork from a large urban transportation network that experiences changes to a small fraction of the whole network. Subnetwork selection techniques are most effective when using a regional dynamic traffic assignment model. The level of detail included in the regional model relieves the user of manually coding subnetwork components because they can be extracted from the full model. This method will reduce the resources necessary for an agency to complete an analysis through time and cost savings. Dynamic traffic assignment also has the powerful capability of determining rerouting due to network changes. However, the major limitation of these new dynamic models is the computational demand of the algorithms, which inhibit use of full regional models for comparing multiple scenarios. By examining a smaller window of the network, where impacts are expected to occur, the burden of computer power and time can be overcome. These methods will contribute to the accuracy of dynamic transportation systems analysis, increase the tractability of these advanced traffic models, and help implement new modeling techniques previously limited by network size. The following describes how to best understand the effects of reducing a network to a subarea and how this technique may be implemented in practice. / text
27

Calibration and validation of transit network assignment models

Fung, Wen-chi, Sylvia., 馮韻芝. January 2005 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
28

Equilibrium models accounting for uncertainty and information provision in transportation networks

Unnikrishnan, Avinash, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
29

Adaptive traffic control system : a study of strategies, computational speed and effect of prediction error /

Chow, Andy Ho Fai. January 2002 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 126-129). Also available in electronic version. Access restricted to campus users.
30

Equilibrium models accounting for uncertainty and information provision in transportation networks

Unnikrishnan, Avinash, January 2008 (has links)
Thesis (Ph.D.)--University of Texas at Austin, 2008. / Includes vita. Includes bibliographical references (p. 200-216). Also available online.

Page generated in 0.087 seconds