• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Instrumentation and Application of Image-Charge Detection of Electrospray-Charged Microparticles and Microdroplets

Gao, Jiuzhi 10 December 2020 (has links)
Image-charge detection is emerging as an important tool to analyze heavy and heterogeneous samples because of its unique advantages in measuring highly charged microparticles. Conventional image-charge detection instruments include at least three fundamental components: an ionization source, an aerodynamic particle delivery system, and an image-charge detector. Here I report research efforts that investigated the mechanisms of image-charge detection and proposed some instrumental developments of these components to suit specific research purposes. In Chapter 2, I report an investigation of the electrospray ionization (ESI) mechanism based on an observation that a certain portion of charged particles generated with an ESI source carried charges opposite to the needle which is biased with a high voltage. Both biological and non-biological samples were used to shed a light on the complex process of droplet evolution in ESI. In Chapter 3, I present two novel designs of printed circuit board (PCB) based image-charge detectors. With these detectors, not only the charge and velocity of each microparticle were investigated, but also the two dimensional trajectories, with applications in aerosolized particle beam diagnostics. Chapter 4 shows several designs of the microparticle delivering system aiming to achieve a faster acceleration of sample microparticles. Finally, Chapter 5 presents some thoughts on future directions for these projects.

Page generated in 0.0825 seconds