• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

BIOSYNTHESIS OF trans-2-HEXENAL IN RESPONSE TO WOUNDING IN STRAWBERRY FRUIT AND INTERACTION OF trans-2-HEXENAL WITH BOTRYTIS CINEREA

Myung, Kyung 01 January 2005 (has links)
Intact strawberry fruit did not produce detectable t-2-H which is derived from -linolenic acid (18:3). However, in response to wounding by gentle bruising, strawberry fruit emitted t-2-H with the largest quantity produced within 10 min following injury. The level of total lipid 18:3 in the fruit increased two-fold in response to wounding whereas free 18:3 declined slightly (about 30%). At 10 min following wounding, fruit exhibited a 25% increase in 13-lipoxygenase (LOX) activity, which leads to the production of 13-hydroperoxyoctadecatrienoic acid (13-HPOT) from 18:3. The activity of hydroperoxide lyase (HPL), which catalyzes formation of cis-3-hexenal (c-3-H), the precursor of t-2-H, from 13-HPOT, increased two-fold at 10 min after wounding. Thus, within 15 min after wounding, free 18:3 substrate availability and the activity of two key enzymes, LOX and HPL, changed in a manner consistent with increased t-2-H biosynthesis. The site and mode of interaction of C6 aldehydes with Botrytis cinerea, a common pathogen of many plant species, was characterized using radiolabeled six carbon (C6) aldehydes, including c-3-H and t-2-H. An approximately 25% molar conversion of 18:3 to C6 aldehydes was obtained by enzymatic manipulation with LOX and HPL extracts. Following exposure of Botrytis cultures to radiolabeled aldehydes, radiolabeled aldehydes were recovered in protein fractions, but not in the lipid fraction. They were incorporated into conidia at a 20-fold higher level than mycelia (per mg fresh weight). About 95% of the radiolabeled aldehyde was recovered in proteins on the surface (wash protein) of the fungal tissue, while 5% was from protein in internal tissue (cell wall and membrane and cytosol). Supplementing radiolabeled aldehydes with nonradiolabled C6 aldehydes to increase the vapor phase concentration affected distribution of radiolabel in each protein fraction. The t-2-H at both 5.4 and 85.6 mol affected protein expression patterns, changing the intensity of expression in over one third of all proteins. Both up- and down-regulation of specific proteins were observed. Though five proteins of interest were analyzed, their identities were not determined. However, the data indicate a clear effect of t-2-H on protein expression in Botrytis cinerea.
2

Use of plant-derived essential oil compounds, naturally-occurring apple aroma compounds, and apple juice flavoring mixtures to control the growth of Escherichia coli O157:H7

Kumar, Mona 17 December 2012 (has links)
In recent years, there have been a number of studies looking at inhibition of microorganisms by spices, herbs or their extracts.  Many of these products have been shown to have antimicrobial activity against foodborne pathogens.  The purpose of this research was to evaluate the antimicrobial activity of three essential oil (EO) compounds (thymol, eugenol, and trans-cinnamaldehyde) alone and in combination with three naturally-occurring apple aroma (AA) compounds (hexanal, trans-2-hexenal and 1-hexanol) to identify the minimum inhibitory concentrations necessary to inhibit E. coli O157:H7.  Three commercial apple juice flavoring mixtures (natural apple cinnamon, natural apple spice and natural red apple) were additionally tested alone for antimicrobial activity against E. coli O157:H7. The standard agar dilution method (SAD) and checkerboard assay were used to evaluate the efficacy of the nine compounds, alone and in combination against E. coli O157:H7.  In general, the EO compounds were significantly more effective against E. coli O157:H7 than the AA compounds (P<0.05).  Cinnamaldehye, with an MIC of 0.2 mg/mL, exhibited the highest degree of activity, followed by thymol, eugenol and trans-2-hexenal, which each had individual MIC values of 1.6 mg/mL.  No synergism was found in the combinations of EO compounds with AA compounds. / Master of Science in Life Sciences

Page generated in 0.0382 seconds