61 |
Biomechanical Interaction Between Fluid Flow and Biomaterials: Applications in Cardiovascular and Ocular BiomechanicsYousefi Koupaei, Atieh January 2020 (has links)
No description available.
|
62 |
[pt] ESTUDO DO ESCOAMENTO EM MODELO DE AORTA UTILIZANDO A VELOCIMETRIA POR IMAGENS ESTEREOSCÓPICAS DE PARTÍCULAS / [en] STEREOSCOPIC PARTICLE IMAGE VELOCIMETRY STUDY OF THE FLOW IN AORTIC MODELGUILHERME MOREIRA BESSA 29 April 2019 (has links)
[pt] A estenose aórtica é um dos mais graves problemas decorrentes de doenças valvares. O implante da prótese valvar aórtica por cateterismo (TAVI) vem se tornando o tratamento mais indicado aos pacientes de alto risco ou inoperáveis. A estenose aórtica grave pode ser uma condição de risco à vida quando não tratada. Devido à natureza do procedimento TAVI, é esperada uma variabilidade no ângulo de inclinação da válvula implantada. O presente trabalho investigou a influência das variações de inclinação e orientação do jato transvalvar sobre o escoamento em aorta ascendente. A compreensão dos padrões hemodinâmicos do fluxo sanguíneo em aorta ascendente é importante porque eles estão intimamente relacionados ao desenvolvimento de doenças cardiovasculares. Para este fim, um modelo vascular com geometria anatômica de paciente específico foi produzido a partir de imagens de tomografia computadorizada, gerando um protótipo impresso em 3D e resina de silicone transparente. Uma configuração especial foi projetada para permitir medições tridimensionais do fluxo em diferentes seções transversais do modelo aórtico. A técnica de velocimetria por imagens estereoscópicas de partículas foi implementada para produzir informações estatísticas acerca do fluxo turbulento, tais como, campos tridimensionais de velocidade média, de energia cinética turbulenta e correlações entre os componentes de flutuação de velocidade. Os resultados obtidos indicaram que o escoamento em aorta ascendente é fortemente afetado pela direção do fluxo de entrada na aorta. / [en] Aortic stenosis is one of the most serious problems arising from valve diseases. Transcatheter Aortic Valve Implantation (TAVI) has become the preferred treatment for high-risk or inoperable patients with severe aortic stenosis that could be a lifethreatening condition when left untreated. Due to the nature of the TAVI procedure, a variability on the tilt angle of the deployed valve is expected. The present work, investigated the effects on the flow field in the ascending aorta due angle variation of the transvalvular jet. Understanding the hemodynamic patterns of blood flow in the ascending aorta is important because they are closely related to the development of cardiovascular diseases. To this end, a patient-specific vascular phantom was produced by a 3D printed model and transparent silicon resin. A special setup was designed to allow measurements of the 3D flow at different cross sections of the aorta. A stereoscopic particle image velocimetry system was implemented to yield instantaneous and averaged turbulent flow information, such as three-dimensional average velocity fields, turbulent kinetic energy, and correlations between the components of velocity fluctuation. The results obtained indicated that the velocity field in the ascending aorta is strongly affected by the inlet flow direction into the aorta.
|
63 |
[en] A NUMERICAL STUDY OF THE INFLUENCE OF THE INCLINATION OF THE AORTIC VALVE ON THE BLOOD FLOW IN THE ASCENDING AORTA. / [pt] ESTUDO NUMÉRICO DA INFLUÊNCIA DA INCLINAÇÃO DA PRÓTESE VALVAR AÓRTICA NO FLUXO SANGUÍNEO EM AORTA ASCENDENTEIVAN FERNNEY IBANEZ AGUILAR 07 October 2019 (has links)
[pt] As patologias na valva aórtica representam umas das principais causas de óbito no mundo. Nos casos de estenose aórtica grave, a substituição da valva nativa é necessária. Existem dois mecanismos de substituição de valva aórtica: cirurgia convencional, através da toracotomia, ou o implante valvar aórtico percutâneo (TAVI, Transcatheter Aortic Valve Implantation). O posicionamento coaxial da prótese valvar em relação ao ânulo aórtico influência o fluxo sanguíneo transvalvar, podendo contribuir para o remodelamento aórtico, culminando em dilatações aneurismáticas, dissecção aórtica e processo aterosclerótico. O presente estudo avalia numericamente a influência do posicionamento coaxial da prótese valvar nas estruturas hemodinâmicas na região de aorta ascendente e início do arco aórtico, durante um ciclo cardíaco. A geometria anatômica avaliada corresponde a um modelo aórtico de um paciente que foi submetido ao implante valvar percutâneo. O escoamento foi obtido com o modelo de turbulência (K - W), utilizando o software ANSYS-Fluent. A interação entre a complacência aórtica e o fluxo sanguíneo durante o ciclo cardíaco foi obtida empregando simulações do tipo FSI (Fluid Structure Interaction). A metodologia numérica foi validada através de comparações com dados experimentais nobres do tipo PIV estereoscópico, com excelente concordância do campo de velocidade e tensões de Reynolds. Observou-se a importância do posicionamento coaxial da prótese valvar aórtica com relação ao direcionamento do jato e área de impacto na parede da aorta; influenciando na formação de regiões de recirculação na raiz da aorta e aorta ascendente; com diferentes estruturas coerentes (vórtices). Identificou-se as regiões de alta pressão e tensão de cisalhamento na parede da aorta, assim como de alta intensidade das grandezas turbulentas no volume interno da aorta. A partir da análise dos resultados foi possível sugerir que a posição coaxial ideal da prótese pode ser obtida quando é direcionada à parede esquerda da aorta com uma inclinação de 4 graus. / [en] Aortic valve pathologies are one of the leading causes of death in the world. In cases of severe aortic stenosis, replacement of the native valve is necessary. There are two mechanisms of aortic valve replacement: conventional surgery through thoracotomy or Transcatheter Aortic Valve Implantation (TAVI). Coaxial positioning of the valve prosthesis in relation to the aortic annulus influences on the transvalvar blood flow, which may contribute to aortic remodeling, culminating in aneurysmal dilations, aortic dissection and atherosclerotic process. The present thesis evaluates the influence of the coaxial positioning of the valve prosthesis on hemodynamic structures in the ascending aorta and the beginning of the aortic arch, during a cardiac cycle. The anatomical geometry evaluated was the aortic model of a specific patient after being submitted to percutaneous valve implantation procedure. The flow was obtained with the (K - W) turbulence model, using ANSYS-Fluent software. Interaction between aortic compliance and blood flow during the cardiac cycle was obtained using simulations FSI (Fluid Structure Interaction). The numerical methodology was validated through comparisons with noble experimental data obtained from stereoscopic PIV method, with excellent agreement of the velocity field and Reynolds stress. It was observed the importance of the coaxial positioning of the aortic valve prosthesis in relation to the jet direction and the impact area in the aortic wall, influencing the formation of recirculation regions in the aortic root and ascending aorta; with different coherent structures (vortices). The regions of high pressure and shear stress were identified in the aortic wall, as well as high intensity turbulent quantities in the internal aortic volume. From the results analysis it was possible to suggest that the ideal coaxial position
of the prosthesis can be obtained when it is directed to the left wall of the aorta with an inclination of 4 degrees.
|
64 |
Leaflet Material Selection for Aortic Valve RepairAbessi, Ovais 21 November 2013 (has links)
Leaflet replacement in aortic valve repair (AVr) is associated with increased long-term repair failure. Hemodynamic performance and mechanical stress levels were investigated after porcine AVr with 5 types of clinically relevant replacement materials to ascertain which material(s) would be best suited for repair. Porcine aortic roots with intact aortic valves were placed in a left-heart simulator mounted with a high-speed camera for baseline valve assessment. Then, the non-coronary leaflet was excised and replaced with autologous porcine pericardium (APP), glutaraldehyde-fixed bovine pericardial patch (BPP; Synovis™), extracellular matrix scaffold (CorMatrix™), or collagen-impregnated Dacron (HEMASHIELD™). Hemodynamic parameters were measured over a range of cardiac outputs (2.5–6.5L/min) post-repair. Material properties of the above materials along with St. Jude Medical™ Pericardial Patch with EnCapTM Technology (SJM) were determined using pressurization experiments. Finite element models of the aortic valve and root complex were then constructed to verify the hemodynamic characteristics and determine leaflet stress levels.
This study demonstrates that APP and SJM have the closest profiles to normal aortic valves; therefore, use of either replacement material may be best suited. Increased stresses found in BPP, HEMASHIELD™, and CorMatrix™ groups may be associated with late repair failure.
|
65 |
Leaflet Material Selection for Aortic Valve RepairAbessi, Ovais January 2013 (has links)
Leaflet replacement in aortic valve repair (AVr) is associated with increased long-term repair failure. Hemodynamic performance and mechanical stress levels were investigated after porcine AVr with 5 types of clinically relevant replacement materials to ascertain which material(s) would be best suited for repair. Porcine aortic roots with intact aortic valves were placed in a left-heart simulator mounted with a high-speed camera for baseline valve assessment. Then, the non-coronary leaflet was excised and replaced with autologous porcine pericardium (APP), glutaraldehyde-fixed bovine pericardial patch (BPP; Synovis™), extracellular matrix scaffold (CorMatrix™), or collagen-impregnated Dacron (HEMASHIELD™). Hemodynamic parameters were measured over a range of cardiac outputs (2.5–6.5L/min) post-repair. Material properties of the above materials along with St. Jude Medical™ Pericardial Patch with EnCapTM Technology (SJM) were determined using pressurization experiments. Finite element models of the aortic valve and root complex were then constructed to verify the hemodynamic characteristics and determine leaflet stress levels.
This study demonstrates that APP and SJM have the closest profiles to normal aortic valves; therefore, use of either replacement material may be best suited. Increased stresses found in BPP, HEMASHIELD™, and CorMatrix™ groups may be associated with late repair failure.
|
Page generated in 0.0653 seconds