• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diel Mediated Populus balsamifera Transcriptome Components Test the Impacts of Artificial Nighttime Lighting

Skaf, Joseph 27 November 2012 (has links)
Artificial nighttime lighting (ANL) is known to adversely affect animals, but little is known what the consequences are to plants. Two genotypes of Populus balsamifera, a common urban tree, were used to investigate how ANL impacts plants. While the two genotypes varied in their physiological sensitivity to ANL, poorer levels of net leaf carbon assimilation compared to control samples suggested that ANL perturbed the perception of time of day for these plants. Gene set analysis on a subset of PopGenExpress microarray samples identified time of day specific processes in P. balsamifera, and a set of candidate ANL-sensitive genes were identified from these. Transcript measurements from the two genotypes revealed that ANL affects plants at the molecular level, for the diel cycling of the putative ANL-sensitive genes was perturbed. Together, these results suggest that ANL affects plants at the physiological and molecular level by perturbing their perception of time of day.
2

Diel Mediated Populus balsamifera Transcriptome Components Test the Impacts of Artificial Nighttime Lighting

Skaf, Joseph 27 November 2012 (has links)
Artificial nighttime lighting (ANL) is known to adversely affect animals, but little is known what the consequences are to plants. Two genotypes of Populus balsamifera, a common urban tree, were used to investigate how ANL impacts plants. While the two genotypes varied in their physiological sensitivity to ANL, poorer levels of net leaf carbon assimilation compared to control samples suggested that ANL perturbed the perception of time of day for these plants. Gene set analysis on a subset of PopGenExpress microarray samples identified time of day specific processes in P. balsamifera, and a set of candidate ANL-sensitive genes were identified from these. Transcript measurements from the two genotypes revealed that ANL affects plants at the molecular level, for the diel cycling of the putative ANL-sensitive genes was perturbed. Together, these results suggest that ANL affects plants at the physiological and molecular level by perturbing their perception of time of day.

Page generated in 0.0971 seconds