• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional long non-coding RNA transcription in Schizosaccharomyces pombe

Ard, Ryan Anthony January 2016 (has links)
Eukaryotic genomes are pervasively transcribed and frequently generate long noncoding RNAs (lncRNAs). However, most lncRNAs remain uncharacterized. In this work, a set of positionally conserved intergenic lncRNAs in the fission yeast Schizosaccharomyces pombe genome are selected for further analysis. Deleting one of these lncRNA genes (ncRNA.1343) exhibited a clear phenotype: increased drug sensitivity. Further analyses revealed that deleting ncRNA.1343 also disrupted a previously unannotated lncRNA, termed nc-tgp1, transcribed in the opposite orientation of the predicted ncRNA.1343 gene and into the promoter of the phosphate-responsive permease gene tgp1+. Detailed analyses revealed that the act of transcribing nc-tgp1 into the tgp1+ promoter increases nucleosome density and prevents transcription factor access. Decreased nc-tgp1 transcription permits tgp1+ expression upon phosphate starvation, while nc-tgp1 loss induces tgp1+ in repressive phosphate-rich conditions. Notably, drug sensitivity results directly from tgp1+ expression in the absence of nc-tgp1 transcription. Similarly, lncRNA transcription upstream of pho1+, another phosphate-regulated gene, increases nucleosome density and prevents transcription factor binding to repress pho1+ in phosphate-replete cells. Importantly, the regulation of tgp1+ and pho1+ by upstream lncRNA transcription occurs in the absence of RNAi and heterochromatin components. Instead, the regulation of tgp1+ and pho1+ by upstream lncRNA transcription resembles examples of transcriptional interference reported in other organisms. Thus, tgp1+ and pho1+ are the first documented examples of genes regulated by transcriptional interference in S. pombe.
2

A new level of gene regulation : establishing a genome-wide role for antisense transcription

Murray, Struan Charles January 2013 (has links)
Transcription lies at the centre of gene expression. In eukaryotes, transcription occurs not only at genes but also across the non-coding portion of the genome, an apparently pervasive process that gives rise to a wide array of different transcripts. In recent years, it has emerged that genes themselves are frequently subject to non-coding transcription of their antisense strand. This antisense transcription is evident in eukaryotes from yeast to mammals; however its general genome-wide role, if indeed it has one, remains elusive. Here, the nature of antisense transcription in the budding yeast Saccharomyces cerevisiae is explored on a genome-wide scale. Antisense transcription is ubiquitous and often abundant, and appears to be driven by a promoter architecture at the 3’ end of genes, one which shows evidence of regulation, and which mirrors that found at the 5’ end. Furthermore, antisense transcription shows evidence of changing gene behaviour. It is associated with a drastically altered chromatin environment at the 5’ promoter and across the gene body; however it is not associated with a change in the level of gene transcription itself. Rather, these chromatin changes appear to enforce a change in the mode of gene transcription, promoting rapid bursts of transcription re-initiation that result in noisier gene expression – a hitherto unknown role of antisense transcription. It is proposed that antisense transcription represents a fundamental layer of gene regulation, and that it should be considered a canonical feature of eukaryotic genes.
3

Regulation of human RNA polymerase II CTD modifications

Kuznetsova, Olga January 2015 (has links)
Transcription of human protein-coding genes and most small nuclear RNA genes is mediated by RNA Polymerase II (Pol II). During a cycle of transcription, Pol II recruits a variety of factors that facilitate transcription elongation, RNA processing and termination, through its long, unstructured C-terminal domain (CTD). The CTD in humans comprises 52 tandem heptapeptide repeats with the consensus sequence Y<sub>1</sub>S<sub>2</sub>P<sub>3</sub>T<sub>4</sub>S<sub>5</sub>P<sub>6</sub>S<sub>7</sub>. Each amino acid of the heptapeptide can be chemically modified, which influences the recruitment of other protein factors to the transcription machinery. Not all enzymes that modify the CTD have been discovered. Recent studies have identified a novel CTD phosphatase: RPAP2 in humans and its yeast homologue Rtr1, which dephosphorylate phospho-Ser5 of the heptapeptide repeats. RPAP2 has been shown to stimulate 3' end cleavage of nascent snRNAs through recruitment of the Integrator complex, and unpublished work suggests the involvement of RPAP2 in regulating vertebrate developmental programs. However, the exact mechanisms that regulate the function of human RPAP2, and thus impact on CTD modification, are not well-understood. This thesis presents a novel mechanism whereby RPAP2 recruits protein phosphatase 1 (PP1) to snRNA genes, where PP1 is postulated to activate P-TEFb to phosphorylate Ser2 of the CTD. At the same time, P-TEFb may have a role in activating the phosphatase activity of RPAP2. Furthermore, RPAP2 itself is shown to be recruited to a number of gene promoters by the RPRD1A protein, which also stimulates its phosphatase activity. RPAP2 was shown to have another role in regulating transcription termination: by recruiting the Integrator complex, which is shown here to mediate termination of snRNA genes, and by a so far unknown mechanism on a long protein-coding gene. An attempt was made to purify and crystallise the human RPAP2 to obtain a crystal structure, however the crystallisation trials were not successful. Finally, a correlation was found in human embryonic stem cells and induced pluripotent stem cells between low levels of RPAP2 and high levels of CTD Ser5P, suggesting a potential involvement of RPAP2 in regulating transcription at a key developmental stage. The results presented here contribute to the understanding of human transcriptional mechanisms and the numerous interactions within the transcription machinery. In particular, the mechanism of terminating the transcription of snRNA genes is identified. An interesting possibility is the regulation of development and stem cell differentiation by RPAP2; however the exact pathways by which this occurs are yet to be discovered.
4

Studies on the regulation of the Napin <i>napA</i> promoter by ABI3, bZIP and bHLH transcription factors

Martin, Nathalie January 2008 (has links)
<p>The B3-domain transcription factor ABI3 is a major regulator of gene expression of seed maturation during Arabidopsis embryogenesis. The <i>napA</i> gene encodes for a <i>Brassica napus</i> 2S storage protein specifically expressed in the embryo during the early and mid-maturation phase (MAT program).The <i>napA</i> promoter contains two essential cis-sequences; the B-box, which functions as an Abscisic acid-responsive element (ABRE) and the RY/G cluster. ABI3 is known to target both these cis-sequences. Several bZIP factors expressed during seed maturation, bZIP12, bZIP38 and bZIP66, as well as a heterodimer of ABI5 and bZIP67, can bind the B-box ABRE in a yeast one-hybrid assay. Amongst them ABI3 and bZIP67 are able to activate synergistically the two cis-elements in a transient protoplast assay. We also show that bZIP67 interacts directly with ABI3 in a yeast two-hybrid assay. Therefore, we hypothesize that i)ABI3 is recruited indirectly to <i>napA</i> through molecular interaction with bZIP67 bound to the B-box ABRE, ii) ABI3 binds directly to the RY-element and interacts with bZIP67 targeted to the adjacent G-box found in the napA RY/G-cluster.</p><p>We also show that the RY/G cluster is responsible for repression of <i>napA</i> expression during the late maturation LEA program, and for repression of ABI3-mediated transactivation during germination. ABI3 from which the A1 activation domain had been removed, can bind to the <i>napA</i> RY-element in a yeast one-hybrid assay, in contrast to full-length ABI3, suggesting that ABI3 DNA-binding abilities are regulated by auto-inhibition. We propose that during late maturation ABI3 loses ability to bind RY, which results in repression of MAT genes but not of LEA genes that contain fewer RY-elements. In parallel, we show that the B3-domain VAL proteins bind to RY-elements and decrease ABI3-mediated transactivation of the <i>napA</i> RY/G and therefore act as active repressors maintaining silencing of MAT genes during vegetative growth.</p>
5

Studies on the regulation of the Napin napA promoter by ABI3, bZIP and bHLH transcription factors

Martin, Nathalie January 2008 (has links)
The B3-domain transcription factor ABI3 is a major regulator of gene expression of seed maturation during Arabidopsis embryogenesis. The napA gene encodes for a Brassica napus 2S storage protein specifically expressed in the embryo during the early and mid-maturation phase (MAT program).The napA promoter contains two essential cis-sequences; the B-box, which functions as an Abscisic acid-responsive element (ABRE) and the RY/G cluster. ABI3 is known to target both these cis-sequences. Several bZIP factors expressed during seed maturation, bZIP12, bZIP38 and bZIP66, as well as a heterodimer of ABI5 and bZIP67, can bind the B-box ABRE in a yeast one-hybrid assay. Amongst them ABI3 and bZIP67 are able to activate synergistically the two cis-elements in a transient protoplast assay. We also show that bZIP67 interacts directly with ABI3 in a yeast two-hybrid assay. Therefore, we hypothesize that i)ABI3 is recruited indirectly to napA through molecular interaction with bZIP67 bound to the B-box ABRE, ii) ABI3 binds directly to the RY-element and interacts with bZIP67 targeted to the adjacent G-box found in the napA RY/G-cluster. We also show that the RY/G cluster is responsible for repression of napA expression during the late maturation LEA program, and for repression of ABI3-mediated transactivation during germination. ABI3 from which the A1 activation domain had been removed, can bind to the napA RY-element in a yeast one-hybrid assay, in contrast to full-length ABI3, suggesting that ABI3 DNA-binding abilities are regulated by auto-inhibition. We propose that during late maturation ABI3 loses ability to bind RY, which results in repression of MAT genes but not of LEA genes that contain fewer RY-elements. In parallel, we show that the B3-domain VAL proteins bind to RY-elements and decrease ABI3-mediated transactivation of the napA RY/G and therefore act as active repressors maintaining silencing of MAT genes during vegetative growth.

Page generated in 0.1812 seconds