Spelling suggestions: "subject:"transferable beliefs model""
1 |
Group based fault-tolerant physical intrusion detection system using fuzzy based distributed RSSI processingRaju, Madhanmohan January 2013 (has links)
No description available.
|
2 |
Target Classification Based on Kinematics / Klassificering av flygande objekt med hjälp av kinematikHallberg, Robert January 2012 (has links)
Modern aircraft are getting more and better sensors. As a result of this, the pilots are getting moreinformation than they can handle. To solve this problem one can automate the information processingand instead provide the pilots with conclusions drawn from the sensor information. An aircraft’smovement can be used to determine which class (e.g. commercial aircraft, large military aircraftor fighter) it belongs to. This thesis focuses on comparing three classification schemes; a Bayesianclassification scheme with uniform priors, Transferable Belief Model and a Bayesian classificationscheme with entropic priors.The target is modeled by a jump Markov linear system that switches between different modes (flystraight, turn left, etc.) over time. A marginalized particle filter that spreads its particles over thepossible mode sequences is used for state estimation. Simulations show that the results from Bayesianclassification scheme with uniform priors and the Bayesian classification scheme with entropic priorsare almost identical. The results also show that the Transferable Belief Model is less decisive thanthe Bayesian classification schemes. This effect is argued to come from the least committed principlewithin the Transferable Belief Model. A fixed-lag smoothing algorithm is introduced to the filter andit is shown that the classification results are improved. The advantage of having a filter that remembersthe full mode sequence (such as the marginalized particle filter) and not just determines the currentmode (such as an interacting multiple model filter) is also discussed.
|
3 |
Méthodes utilisant des fonctions de croyance pour la gestion des informations imparfaites dans les réseaux de véhicules / Methods using belief functions to manage imperfect information in vehicular networksBou Farah, Mira 02 December 2014 (has links)
La popularisation des véhicules a engendré des problèmes de sécurité et d’environnement. Desprojets ont été lancés à travers le monde pour améliorer la sécurité sur la route, réduire l’encombrementdu trafic et apporter plus de confort aux conducteurs. L’environnement des réseaux devéhicules est complexe et dynamique, les sources sont souvent hétérogènes, de ce fait les informationséchangées peuvent souvent être imparfaites. La théorie des fonctions de croyance modélisesouplement les connaissances et fournit des outils riches pour gérer les différents types d’imperfection.Elle est utilisée pour représenter l’incertitude, gérer les différentes informations acquises etles fusionner. Nous nous intéressons à la gestion des informations imparfaites échangées entre lesvéhicules concernant les événements sur la route. Les événements locaux et les événements étendusn’ayant pas les mêmes caractéristiques, les travaux réalisés les distinguent. Dans un environnementsans infrastructure où chaque véhicule a son propre module de fusion, l’objectif est de fournir auxconducteurs la synthèse la plus proche possible de la réalité. Différents modèles fondés sur desfonctions de croyance sont proposés et différentes stratégies sont étudiées : affaiblir ou renforcervers l’absence de l’événement pour prendre en compte le vieillissement des messages, garder lesmessages initiaux ou seulement le résultat de la fusion dans la base des véhicules, considérer la miseà jour du monde, prendre en compte l’influence du voisinage pour gérer la spatialité des embouteillages.Les perspectives restent nombreuses, certaines sont développées dans ce manuscrit commela généralisation des méthodes proposées à tous les événements étendus tels que les brouillards. / The popularization of vehicles has created safety and environmental problems. Projects havebeen launched worldwide to improve road safety, reduce traffic congestion and bring more comfortto drivers. The vehicle network environment is dynamic and complex, sources are often heterogeneous,and therefore the exchanged information may be imperfect. The theory of belief functionsoffers flexibility in uncertainty modeling and provides rich tools for managing different types of imperfection.It is used to represent uncertainty, manage and fuse the various acquired information.We focus on the management of imperfect information exchanged between vehicles concerningevents on the road. The carried work distinguishes local events and spatial events, which do nothave the same characteristics. In an environment without infrastructure where each vehicle is afusion center and creates its own vision, the goal is to provide to each driver the synthesis of thesituation on the road as close as possible to the reality. Different models using belief functionsare proposed. Different strategies are considered: discount or reinforce towards the absence of theevent to take into account messages ageing, keep the original messages or just the fusion result invehicle database, consider the world update, manage the spatiality of traffic jam events by takinginto account neighborhood. Perspectives remain numerous; some are developed in the manuscriptas the generalization of proposed methods to all spatial events such as fog blankets.
|
Page generated in 0.0982 seconds