• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zinc transporter SLC30A2 genetic variations and health implications

Castillo San Juan, Sandra 11 March 2014 (has links)
The SLC30A2 zinc transporter has been investigated due to its important role in zinc secretion into human milk. SLC30A2 is expressed in mammary epithelial cells, and the presence of genetic variations in this transporter could cause low zinc transport into the milk, leading to Transient Neonatal Zinc Deficiency (TNZD) in newborns. Through bioinformatics analysis 22 SNPs were identified. Therefore, we aim to identify the functional changes caused by 4 SNPs. By subcloning the SLC30A2 open reading frames into the Gateway expression plasmid tagged with red and green fluorescent proteins (mCherry, tGFP). Four SNPs were introduced by mutagenesis and tagged with mCherry. We transfected individual plasmids into mammary epithelial cells (HC11) and observed cellular targeting using epifluorescent imaging. The most common variants located to secreting endosomes and membrane in HC11 cells. Incorrect targeting of SLC30A2 causes mislocalization. It may be possible to identify mothers carrying risk genotypes for infant zinc deficiency.
2

Zinc transporter SLC30A2 genetic variations and health implications

Castillo San Juan, Sandra 11 March 2014 (has links)
The SLC30A2 zinc transporter has been investigated due to its important role in zinc secretion into human milk. SLC30A2 is expressed in mammary epithelial cells, and the presence of genetic variations in this transporter could cause low zinc transport into the milk, leading to Transient Neonatal Zinc Deficiency (TNZD) in newborns. Through bioinformatics analysis 22 SNPs were identified. Therefore, we aim to identify the functional changes caused by 4 SNPs. By subcloning the SLC30A2 open reading frames into the Gateway expression plasmid tagged with red and green fluorescent proteins (mCherry, tGFP). Four SNPs were introduced by mutagenesis and tagged with mCherry. We transfected individual plasmids into mammary epithelial cells (HC11) and observed cellular targeting using epifluorescent imaging. The most common variants located to secreting endosomes and membrane in HC11 cells. Incorrect targeting of SLC30A2 causes mislocalization. It may be possible to identify mothers carrying risk genotypes for infant zinc deficiency.

Page generated in 0.135 seconds