• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Treatment Dose Accuracy in Radiation Therapy

Wong, Tony Po Yin, tony.wong@swedish.org January 2007 (has links)
The thesis aims to improve treatment dose accuracy in brachytherapy using a high dose rate (HDR) Ir-192 stepping source and in external beam therapy using intensity modulated radiation therapy (IMRT). For HDR brachytherapy, this has been achieved by investigating dose errors in the near field and the transit dose of the HDR brachytherapy stepping source. For IMRT, this study investigates the volume effect of detectors in the dosimetry of small fields, and the clinical implementation and dosimetric verification of a 6MV photon beam for IMRT. For the study of dose errors in the near field of an HDR brachytherapy stepping source, the dose rate at point P at 0.25 cm in water from the transverse bisector of a straight catheter was calculated with Monte Carlo code MCNP 4.A. The Monte Carlo (MC) results were used to compare with the results calculated with the Nucletron Brachytherapy Planning System (BPS) formalism. Using the MC calculated radial dose function and anisotropy function with the BPS formalism, 1% dose calculation accuracy can be achieved even in the near field with negligible extra demand on computation time. A video method was used to analyse the entrance, exit and the inter-dwell transit speed of the HDR stepping source for different path lengths and step sizes ranging from 2.5 mm to 995 mm. The transit speeds were found to be ranging from 54 to 467 mm/s. The results also show that the manufacturer has attempted to compensate for the effects of inter-dwell transit dose by reducing the actual dwell time of the source. A well-type chamber was used to determine the transit doses. Most of the measured dose differences between stationary and stationary plus inter-dwell source movement were within 2%. The small-field dosimetry study investigates the effect of detector size in the dosimetry of small fields and steep dose gradients with a particular emphasis on IMRT measurements. Due to the finite size of the detector, local discrepancies of more than 10 % are found between calculated cross profiles of intensity modulated beams and intensity modulated profiles measured with film. A method to correct for the spatial response of finite sized detectors and to obtain the

Page generated in 0.0608 seconds