• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 17
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 105
  • 105
  • 105
  • 25
  • 21
  • 21
  • 18
  • 13
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structural and magnetic properties of the oxides AB(2)oxygen(6) (A(2+) = manganese, iron, cobalt, nickel, copper; and B(5+) = arsenic or antimony).

Nakua, Abdussalam Mohammed. Greedon, J. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1994. / Source: Dissertation Abstracts International, Volume: 56-08, Section: B, page: 4338. Adviser: J. E. Greedan.
12

Electronic transitions and multiferroicity in transition metal oxides

Zhou, Haidong, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Vita. Includes bibliographical references.
13

A study of bond-length fluctuations in transition metal oxides /

Yan, Jiaqiang, Goodenough, John B. January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: John B. Goodenough. Vita. Includes bibliographical references.
14

Transition Metal Oxides in Organic Electronics

Greiner, Mark 19 June 2014 (has links)
Transition metal oxide thin films are commonly used in organic electronics devices to improve charge-injection between electrodes and organic semiconductors. Some oxides are good hole-injectors, while others are good electron-injectors. Transition metal oxides are materials with many diverse properties. Many transition metals have more than one stable oxidation state and can form more than one oxide. Each oxide possesses its own unique properties. For example, transition metal oxide electronic band structures can range from insulating to conducting. They can exhibit a wide range of work functions. Some oxides are inert, while others are catalytically active. Such properties are affected by numerous factors, including cation oxidation state and multiple types of defects. Currently it is not fully understood which oxide properties are the most important to their performance in organic electronics. In the present thesis, photoemission spectroscopy is used to examine how changes in certain oxide properties–such as cation oxidation states and defects—are linked to the oxide properties that are relevant to organic electronics devices—such as an oxide’s work function and electron band structure. In order to unravel correlations between these properties, we controllably change one property and measure how it changes affects another property. By performing such tests on a wide range of diverse transition metal oxides, we can discern broadly-applicable relationships. We establish a relationship between cation oxidation state, work functions and valence band structures. We determine that an oxide’s electron chemical potential relative to an organic’s donor and acceptor levels governs energy-level alignment at oxide organic interfaces. We establish how interfacial reactivity at electrode/oxide interfaces dictates an oxide’s work function and electronic structure near the interface. iii These findings demonstrate some of the very interesting fundamental relationships that exist between chemical and electronic properties at interfaces. These findings should assist in the future development and understanding of the functional interfaces of organic semiconductors and transition-metal oxides.
15

Electronic transitions of transition metal monoboride and monoxides

Wang, Na, 王娜 January 2014 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
16

Electronic structures of transition metal oxides

Guo, Yuzheng January 2014 (has links)
No description available.
17

Transition Metal Oxides in Organic Electronics

Greiner, Mark 19 June 2014 (has links)
Transition metal oxide thin films are commonly used in organic electronics devices to improve charge-injection between electrodes and organic semiconductors. Some oxides are good hole-injectors, while others are good electron-injectors. Transition metal oxides are materials with many diverse properties. Many transition metals have more than one stable oxidation state and can form more than one oxide. Each oxide possesses its own unique properties. For example, transition metal oxide electronic band structures can range from insulating to conducting. They can exhibit a wide range of work functions. Some oxides are inert, while others are catalytically active. Such properties are affected by numerous factors, including cation oxidation state and multiple types of defects. Currently it is not fully understood which oxide properties are the most important to their performance in organic electronics. In the present thesis, photoemission spectroscopy is used to examine how changes in certain oxide properties–such as cation oxidation states and defects—are linked to the oxide properties that are relevant to organic electronics devices—such as an oxide’s work function and electron band structure. In order to unravel correlations between these properties, we controllably change one property and measure how it changes affects another property. By performing such tests on a wide range of diverse transition metal oxides, we can discern broadly-applicable relationships. We establish a relationship between cation oxidation state, work functions and valence band structures. We determine that an oxide’s electron chemical potential relative to an organic’s donor and acceptor levels governs energy-level alignment at oxide organic interfaces. We establish how interfacial reactivity at electrode/oxide interfaces dictates an oxide’s work function and electronic structure near the interface. iii These findings demonstrate some of the very interesting fundamental relationships that exist between chemical and electronic properties at interfaces. These findings should assist in the future development and understanding of the functional interfaces of organic semiconductors and transition-metal oxides.
18

The crystal and electronic structures of oxides containing d0 transition metals in octahedral coordination

Eng, Hank W., January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains xx, 180 p.; also includes graphics. Includes bibliographical references (p. 139-145).
19

Synthesis, structure and properties of high pressure and ambient pressure ternary vanadium oxides

Markkula, Mikael January 2013 (has links)
Transition metal oxides have been extensively studied during past decades. The purpose of this research was to synthesize new or little characterised transition metal oxides using high-pressure/high-temperature (HPHT) techniques. Various ternary vanadium oxides have been synthesised at ambient and high pressure conditions. All compounds have been studied by neutron and laboratory X-ray powder diffraction and magnetisation measurements. In some cases resistivity and synchrotron X-ray powder diffraction measurements were also carried out. The MnVO3 perovskite containing localized 3d5 Mn2+ and itinerant 3d1 V4+ states has been synthesised at 8 GPa and 1100°C. MnVO3 crystallises in Pnma space group (a = 5.2741(6) Å, b = 7.4100(11) Å, and c = 5.1184(8) Å at 300 K) and is metallic at temperatures of 2 – 300 K and at pressures of up to 67 kbar. Synchrotron X-ray powder diffraction study on the combined sample of several high pressure products showed slight variation in the stoichiometry of MnVO3. Incommensurate Mn spin order was discovered in the neutron powder diffraction measurements, which reveal a (0.29 0 0) magnetic vector below the 46 K spin ordering transition, and both helical and spin density wave orderings are consistent with the diffraction intensities. Electronic structure calculations show large exchange splittings of the Mn and V 3d bands, and (kx 0 0) crossings of the Fermi energy by spin up and down V 3d bands may give rise to Ruderman-Kittel-Kasuya-Yosida coupling of Mn moments, in addition to their superexchange interactions. The new compound CoVO4 has been discovered in a high pressure synthesis experiment. Magnetic susceptibility measurement, synchrotron X-ray and neutron powder diffraction studies were carried out. Refinements of the synchrotron X-ray and neutron data show CoVO4 to crystallise in space group Pbcn (a = 4.5012(2) Å, b = 5.5539(3) Å, and c = 4.8330(2) Å at 300 K (synchrotron X-ray data)). The magnetic susceptibility measurement reveals that Co3+ is most likely in a low spin state in CoVO4. Monoclinic brannerite type CoV2O6 was synthesised in ambient pressure. Neutron powder diffraction measurements were carried out and an antiferromagnetic order with an a x b x 2c supercell was observed below TN = 15 K. High spin Co2+ moments of magnitude 4.77(4) μB at 4 K lie in the ac plane and are ferromagnetically coupled within chains of edge-sharing CoO6 octahedra parallel to b axis. No structural transition is observed down to 4 K, but a magnetostriction accompanying antiferromagnetic order at TN = 15 K was discovered. A field-induced 1/3 magnetisation plateau and corresponding changes in the magnetic structure were studied by carrying out neutron powder diffraction measurements at 2 K in applied magnetic fields of 0, 2.5 and 5.0 T. Three collinear magnetic phases were observed as field increases; the above antiferromagnetic state with propagation vector (0 0 ½), a ferrimagnetic (¯⅓ 1 ⅓) phase, and a (0 0 0) ferromagnetic order. Co2+ moments of 4.4 - 5.0 μB have a large orbital component and are aligned close to the c-axis direction in all cases. Spin-lattice coupling leads to a magnetostriction and volume expansion as field increases. The ferrimagnetic phase accounts for the previously reported 1/3 magnetisation plateau, and demonstrates that monoclinic CoV2O6 behaves as an accidental triangular antiferromagnetic lattice in which further frustrated orders may be accessible. Orthorhombic columbite-type NiV2O6 and CoV2O6 compounds were synthesised at 6 GPa and 900°C. Metamagnetism and magnetic transitions were found in magnetic measurements. Powder neutron diffraction studies in zero and applied field were carried out. Both compounds were refined in space group Pbcn and the following lattice parameters were obtained at 300 K, CoV2O6: a = 13.4941(20) Å, b = 5.5736(9) Å, and c = 4.8082(8) Å and NiV2O6: a = 13.3725(17) Å, b = 5.5344(7) Å, and c = 4.8162(7) Å. Neutron powder diffraction studies in zero field did not reveal any magnetic peaks for either of the compounds but magnetic order emerges in applied fields between 1 and 4 T.
20

Synthesis and characterization of transition-metal-doped zinc oxide nanocrystals for spintronics. / 基於自旋電子學應用的過渡金屬摻雜氧化鋅納米晶之合成與表徵 / CUHK electronic theses & dissertations collection / Ji yu zi xuan dian zi xue ying yong de guo du jin shu shan za yang hua xin na mi jing zhi he cheng yu biao zheng

January 2007 (has links)
A simple bottom-up-based synthetic strategy named a solvothermal technique is introduced as the primary synthetic approach and its crystal growth mechanism is scrutinized. N-type cobalt-doped ZnO-based DMS nanocrystals are employed as a model system, and characterized by a broad spectrum of advanced microscopic and spectroscopic techniques. It is found that the self-orientation growth mechanism, imperfect oriented attachment, is intimately correlated with the high-temperature ferromagnetism via defects. The influence of processing on the magnetic properties, such as compositional variations, reaction conditions, and post-growth treatment, is also studied. In this way, an in-depth understanding of processing-structure-property interrelationships and origins of magnetism in DMS nanocrystals are obtained in light of the theoretical framework of a spin-split impurity band model. In addition, a nanoscale spinodal decomposition phase model is also briefly discussed. / Following the similar synthetic route, copper- and manganese-doped ZnO nanocrystals have been synthesized and characterized. They both show high-temperature ferromagnetism in line with the aforementioned theoretical model(s). Moreover, they display interesting exchange biasing phenomena at low temperatures, revealing the complexity of magnetic phases therein. / Spintronics (spin transport electr onics), in which both spin and charge of carriers are utilized for information processing, is believed to challenge the current microelectronics and to become the next-generation electronics. Nanostructured spintronic materials and their synthetic methodologies are of paramount importance for manufacturing future nanoscale spintronic devices. This thesis aims at studying synthesis, characterization, and magnetism of transition-metal-doped zinc oxide (ZnO) nanocrystals---a diluted magnetic semiconductor (DMS)---for potential applications in future nano-spintronics. / The crystal growth strategy demonstrated in this work not only provides a more convenient approach to directly tailor magnetic properties of advanced multifunctional spintronic materials on a nanometer scale but also contributes to a deeper insight into the microscopic origin of magnetism in wide-band-gap oxide DMSs. / Wang, Xuefeng. / "August 2007." / Adviser: J. B. Xu. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 1230. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.

Page generated in 0.1584 seconds