• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 652
  • 107
  • 35
  • 30
  • 28
  • 18
  • 16
  • 10
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1101
  • 1101
  • 294
  • 284
  • 260
  • 123
  • 115
  • 101
  • 99
  • 99
  • 82
  • 79
  • 76
  • 73
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Peroxide complexes of non-redox active metal centers : models for alternative mechanisms in cytochrome P450 oxidations? /

DiPasquale, Antonio Giovanni. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 74-83).
72

Intrinsic and thermodynamic influences on hydrogen atom transfer reactions involving transition metal complexes /

Roth, Justine P. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 170-184).
73

The modelling of transition metal centres using molecular mechanics and density functional theory

Paget, Veronica J. January 1996 (has links)
No description available.
74

The synthesis of triangular phosphido-bridged iridium alkyne clusters

Dônnecke, Daniel 16 August 2018 (has links)
This thesis describes the synthesis and chemistry of triangular phosphido-bridged iridium clusters. The cluster [Ir3(μ-PPh2)3 (CO)6] was obtained analytically pure for the first time. In the solid state this 48 electron cluster exhibits one short iridium-iridium bond of 2.6702(3) Å and two long iridium-iridium bonds, 2.9913(3) Å on average. Two phosphido bridges rest closely within the plane of the metal triangle while the unique phosphido group, bridging the short metal-metal bond, is almost orthogonal to this plane. NMR data suggest that this structure is also adopted in solution below 183 K. At higher temperature however the phosphido bridges give rise to an average signal which is presumably due to a rapid flip-flop motion of these groups. Addition of one molar equivalent of dimethylacetylendicarboxylate to [Ir3(μ-PPh2)3(CO)6] results in formation of [Ir3(μ-PPh2)3(CO) 6(μ-DMAD)] which contains a diiridacyclobutene. Addition of excess alkyne leads to the CO-inserted [Ir3(μ-PPh2) 3(CO)5(μ-DMAD){κ2-MeO 2CCC(CO2Me)C(O)}] which photochemically decarbonylates, to give [Ir3(μ-PPh2)3(CO)5(μ-DMAD) 2]. The 50 electron cluster [Ir3(μ-PPh2) 3(CO)5(t-BuNC)2] also reacts with dimethylacetylendicarboxylate to yield the CO-inserted [Ir3(μ-PPh2)3(CO) 3(t-BuNC)2{κ2-MeO2CCC(CO 2Me)C(O)}2] in two isomeric forms. The new CO-insertion products represent stable iridacyclobutenones which are reluctant to undergo further insertion reactions involving carbon monoxide, tert-butylisocyanide or dimethylacetylenedicarboxylate. Addition of dimethylacetylendicarboxylate to cluster mixtures containing predominantly [Ir2Rh(μ-PPh2)3(CO) 5] and [Ir3(μ-PPh2)3(CO)6] results in selective reaction at the tri-iridium cluster which allowed for the isolation of the heterometallic cluster by chromatography. In contrast to the tri-iridium parent, [Ir2Rh(μ-PPh2)3(CO) 5] is much less reactive to dimethylacetylendicarboxylate and inert to CO. Similarly, the heterometallic [Ir2Rh(μ-PPh2) 3(CO)4(RNC)3] (R = tert-butyl; 1,1,3,3-tetramethylbutyl) are reluctant to undergo oxidative addition reactions with dimethylacetylendicarboxylate and iodomethane which readily afford addition products with the homometallic parent clusters. The kinetic difference is a consequence of electronic rather than steric factors in the clusters. / Graduate
75

π-complexes of osmium and ruthenium organometallic clusters

Morewood, Catherine Alexandra January 1995 (has links)
No description available.
76

A study of some ruthenium(II) and manganese(I) acetylide and vinylidene complexes

Faulkner, Charlotte Waveney January 1994 (has links)
No description available.
77

Preparation and reactivity of transition-metal complexes of polydentate ligands containing both amino and phosphino functional groups

Tse, Man Chung 01 January 1995 (has links)
No description available.
78

Experiments with polydentate

Howell, I. V. January 1967 (has links)
No description available.
79

Metal complexes of polydentate ligands

McAuliffe, Charles Andrew January 1967 (has links)
No description available.
80

On the microstructure and physical properties of hot pressed (Hf, Ti) C

Heiligers, Christiané January 2007 (has links)
The microstructure and physical properties of hot pressed (Hf, Ti) C have been investigated with the aim of producing a cutting tool material with similar hardness to that of WC-Co and TiC-based cermets. Sintered samples were hot pressed from HfC0.7 and TiC0.9 powders using powder metallurgical techniques and the processing cycle was optimized for this system. Ni was used as a binder in selected samples and C black was added to compensate for sub-stoichiometry and to aid in the reduction of oxides formed during milling. Microstructural analyses were performed by scanning and transmission electron microscopy (SEM and TEM) and the composition was determined from X-ray diffraction (XRD) and energy dispersive X-ray spectrometry (EDS). The physical properties measured are density and Vickers hardness, and the indentation fracture toughness was determined using the Shetty formula. The fundamental interactions between HfC, TiC and Ni during hot pressing were investigated and the results obtained used to explain the microstructure that develops in samples made from powder mixtures. The interactions studied are the inter-diffusion of HfC and TiC through the solid state, and the dissolution and re-precipitation rate of the carbides in a liquid Ni binder. EDS analysis revealed that the rate at which Ti diffuses into HfC is higher than the rate at which Hf diffuses into TiC. Upper limits to the diffusion coefficients for these processes are determined and show that solid solution carbides will form from HfC + TiC powder mixtures at 2000 ºC in 1 hour if the average powder particle size is less than 5 μm. The diffusion rates decrease with a decrease in hot pressing temperature but mass transport between the phases can be enhanced by addition of a metallic binder. TEM and EDS analysis shows that Ni wets TiC more efficiently than HfC and that the solubility of TiC in Ni is also higher than that of HfC. The grain size of the carbide phases increases with an increase in the rate at which they dissolve into and re-precipitate from the liquid binder. The crystal structure of the binder phase depends on the concentration of Ti and Hf that remain in the binder after cooling and the carbide phase in which the binder is embedded. Analysis of TEM electron diffraction patterns show that the binder phase consists of cubic solid solutions as well as intermetallic and cubic phases in which atomic ordering is observed.

Page generated in 0.1214 seconds