Spelling suggestions: "subject:"translokasie"" "subject:"translokation""
1 |
Detekce polymorfizmu DNA u genotypů tritikale se zlepšenou pekařskou kvalitouSlezáková, Kateřina January 2008 (has links)
No description available.
|
2 |
Struktura motorové podjednotky a translokační model pro EcoR124I restrikční-modifikační komplexLAPKOUSKI, Mikalai January 2008 (has links)
structure determination of HsdR motor subunit and translocation model for EcoR124I restriction-modification complex
|
3 |
Role segmentu 400-500 v biologické aktivitě adenylát cyklázového toxinu bakterie Bordetella pertussis / Role of the segment 400-500 in biological activity of Bordetella pertussis adenylate cyclase toxinSuková, Anna January 2017 (has links)
The adenylate cyclase toxin-hemolysin (CyaA) plays a key role in virulence of the whooping cough agent Bordetella pertussis. It translocates an AC enzyme into cytosol of CD11b+ phagocytes and subverts their bactericidal functions by unregulated conversion of ATP to cAMP. In parallel, CyaA permeabilizes cellular membrane by forming cation-selective pores. The goal of my diploma thesis was an analysis of the mechanism of interaction of the segment linking the invasive adenylate cyclase domain and the RTX hemolysin moiety of CyaA with target membrane. Our data show that the segment linking the AC to the hydrophobic domain of CyaA is directly involved in the interaction of the toxin with the membrane and controls the formation of small cationt-selective pores. Our results generate new knowledge that will be of relevance to the entire field of toxin biology and will enable the design of improved CyaA- based vaccines. Keywords: Bordetella pertussis, adenylate cyclase toxin, membrane translocation, pore- forming activity, black lipid bilayers, liposomes
|
4 |
Úloha RTX domény v aktivitě adenylátcyklázového toxinu z Bordetella pertussis / The role of RTX domain in the activity of adenylate cyclase toxin from Bordetella pertussisKlímová, Nela January 2015 (has links)
The adenylate cyclase toxin (CyaA) of Bordetella pertussis is a 1706-residue protein comprising an amino-terminal adenylate cyclase (AC) domain and a carboxy-terminal Repeat-in-Toxin (RTX) domain. The RTX domain is a hallmark of the family of RTX proteins, which are secreted from the cytosol of Gram-negative bacteria to the cell environment through the Type I Secretion System (T1SS). The RTX domain of CyaA consists of five blocks of RTX nonapetide repeats with a consensus sequence X-(L/I/V)-X-G-G-X-G- X-D. The aim of this work was to determine the role of the RTX domain in biological activities of CyaA and its role in the secretion of the toxin molecule from Bordetella pertussis. Systematic deletion analysis revealed that none of the prepared CyaA constructs was able to translocate its AC domain across the cytoplasmic membrane of host cells and make pores in target membranes. Moreover, deletion of individual RTX repeat blocks resulted in a very low efficacy of secretion of CyaA mutants into cell exterior. These data suggested that structural integrity of the RTX domain of CyaA is essential not only for cytotoxic activities of the toxin molecule but also for its secretion through the T1SS.
|
5 |
Korelace imunohistochemických a molekulárně biologických metod v diagnostice nádorů slinných žláz / Correlation of Immunohistochemical and Molecular Methods in Diagnostics of Salivary Gland TumorsHoráková, Markéta January 2019 (has links)
This doctoral thesis is dealing with the correlation of morphological, immunohistochemical and genetical findings in malignant tumors of salivary glands. The first half of the thesis comprises the summary of current knowledge about salivary malignancies. The second half is presenting the research itself. The research results are divided into three parts. The first part is presenting the method of "2-step diagnostic test" of malignant tumors. This screening test aims to find new, so far not described gene aberrations with a focus on malignant tumors of salivary glands. This method takes place in two consecutive steps. In the first step the material is examined by an immunohistochemical mixture of antibodies, which non-specifically detects aberration in the genes NTRK1-3, ALK and ROS1. In the second step all positive cases are subjected to highly sensitive and specific molecular-genetic examination by the method of next generation sequencing (NGS) using the Archer kit. In the second part of the work there has been designed the approach to the cytological diagnosis of salivary secretory carcinoma by the fine-needle aspiration (FNA). This part is describing to the details the cytomorphology of secretory carcinoma in both, Pap smears and cell blocks, from which additional immunocytochemical and genetic...
|
6 |
Fluorescenční studie bakteriálních membránových proteinů a buněčné signalizace. / Fluorescence studies of bacterial membrane proteins and cell signalling.Fišer, Radovan January 2011 (has links)
(English) This work is based on five publications studying mostly adenylate cyclase toxin (CyaA) from Bordetella pertussis and its interaction with biological membranes. CyaA permeabilizes cell membranes by forming small cationselective pores and subverts cellular signaling by delivering an adenylate cyclase (AC) enzyme that converts ATP to cAMP into host cells. First study clarifies the membrane disruption mechanisms of CyaA and another bacterial RTX toxin; αhemolysin (HlyA) from Escherichia coli. For this purpose, we employed a fluorescence requenching method using liposomes as target membranes. We showed that both toxins induced a graded leakage of liposome content with different ion selectivities (Fišer a Konopásek 2009). Both AC delivery and pore formation were previously shown to involve a predicted amphipathic αhelix(502522). In the second publication we investigated another predicted transmembrane αhelix(565591) that comprises a Glu(570) and Glu(581) pair. We examined the roles of these glutamates in the activity of CyaA, mostly on planar lipid membranes end erythrocytes. Negative charge at position 570, but not at position 581, was found to be essential for cation selectivity of the pore, suggesting a role of Glu(570) in...
|
7 |
Funkční charakterizace LACE1 ATPázy a mitochondriálních AAA proteáz YME1L a AFG3L2 v mitochondriální proteinové homeostáze. / Functional characterization of LACE1 APTase and mitochondrial AAA proteases YME1L and AFG3L2 in mitochondrial protein homeostasis.Tesařová, Jana January 2019 (has links)
Mitochondrial protein homeostasis is crucial for cellular function and integrity. It is ensured by many specific mitochondrial proteases with possible chaperone functions located across the various mitochondrial subcompartments. In the first part, we have focused on characterization of functional overlap and cooperativity of proteolytic subunits AFG3L2 and YME1L of the mitochondrial inner membrane complexes m- and i-AAA in HEK293 cells. The double AFG3L2/YME1L knockdown cells showed severe alteration in OPA1 protein processing, marked elevation in OMA1 protease and severe reduction in SPG7. Our results reveal cooperative and partly redundant involvement of AFG3L2 and YME1L in the maintenance of mitochondrial protein homeostasis and further emphasize their importance for mitochondrial and cellular function and integrity. The aim of the second part was to characterize the cellular function of LACE1 (lactation elevated 1) in mitochondrial protein homeostasis. LACE1 protein is a human homologue of yeast Afg1 (ATPase family gene 1) ATPase. We show that LACE1 is a mitochondrial integral membrane protein that exists as a part of three complexes of approximately 140, 400 and 500 kDa. We demonstrate that LACE1 mediates degradation of nuclear-encoded complex IV subunits COX4, COX5A and COX6A. Using affinity...
|
Page generated in 0.0404 seconds