• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 278
  • 52
  • 49
  • 20
  • 15
  • 12
  • 7
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 622
  • 622
  • 622
  • 143
  • 132
  • 130
  • 114
  • 100
  • 93
  • 68
  • 67
  • 63
  • 63
  • 56
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

アルミニウム水素化物の合成および原子配置と水素放出特性

ORIMO, Shin-ichi, MUTO, Shunsuke, OTOMO, Toshiya, IKEDA, Kazutaka, 折茂, 慎一, 武藤, 俊介, 大友, 季哉, 池田, 一貴 01 March 2011 (has links)
No description available.
112

Strain Green's functions for buried quantum dots

Pearson, Gary S. January 2001 (has links)
No description available.
113

Processing and Characterization of P-Type Doped Zinc Oxide Thin Films

Myers, Michelle Anne 03 October 2013 (has links)
Applications of zinc oxide (ZnO) for optoelectronic devices, including light emitting diodes, semiconductor lasers, and solar cells have not yet been realized due to the lack of high-quality p-type ZnO. In the research presented herein, pulsed laser deposition is employed to grow Ag-doped ZnO thin films, which are characterized in an attempt to understand the ability of Ag to act as a p-type dopant. By correlating the effects of the substrate temperature, oxygen pressure, and laser energy on the electrical and microstructural properties of Ag-doped ZnO films grown on c-cut sapphire substrates, p-type conductivity is achieved under elevated substrate temperatures. Characteristic stacking fault features have been continuously observed by transmission electron microscopy in all of the p-type films. Photoluminescence studies on n-type and p-type Ag-doped ZnO thin films demonstrate the role of stacking faults in determining the conductivity of the films. Exciton emission attributed to basal plane stacking faults suggests that the acceptor impurities are localized nearby the stacking faults in the n-type films. The photoluminescence investigation provides a correlation between microstructural characteristics and electrical properties of Ag- doped ZnO thin films; a link that enables further understanding of the doping nature of Ag impurities in ZnO. Under optimized deposition conditions, various substrates are investigated as potential candidates for ZnO thin film growth, including r -cut sapphire, quartz, and amorphous glass. Electrical results indicated that despite narrow conditions for obtaining p-type conductivity at a given substrate temperature, flexibility in substrate choice enables improved electrical properties. In parallel, N+-ion implantation at elevated temperatures is explored as an alternative approach to achieve p-type ZnO. The ion implantation fluence and temperature have been optimized to achieve p-type conductivity. Transmission electron microscopy reveals that characteristic stacking fault features are present throughout the p-type films, however in n-type N-doped films high-density defect clusters are observed. These results suggest that the temperature under which ion implantation is performed plays a critical role in determining the amount of dynamic defect re- combination that can take place, as well as defect cluster formation processes. Ion implantation at elevated temperatures is shown to be an effective method to introduce increased concentrations of p-type N dopants while reducing the amount of stable post-implantation disorder. Finally, the fabrication and properties of p-type Ag-doped ZnO/n-type ZnO and p-type N-doped ZnO/n-type ZnO thin film junctions were reported. For the N-doped sample, a rectifying behavior was observed in the I-V curve, consistent with N-doped ZnO being p-type and forming a p-n junction. The turn-on voltage of the device was ∼2.3 V under forward bias. The Ag-doped samples did not result in rectifying behavior as a result of conversion of the p-type layer to n-type behavior under the n- type layer deposition conditions. The systematic studies in this dissertation provide possible routes to grow p-type Ag-doped ZnO films and in-situ thermal activation of N-implanted dopant ions, to overcome the growth temperature limits, and to push one step closer to the future integration of ZnO-based devices.
114

Microstructure-property correlation in magnesium-based hydrogen storage systems- The case for ball-milled magnesium hydride powder and Mg-based multilayered composites

Danaie, Mohsen 06 1900 (has links)
The main focus of this thesis is the characterization of defects and microstructure in high-energy ball milled magnesium hydride powder and magnesium-based multilayered composites. Enhancement in kinetics of hydrogen cycling in magnesium can be achieved by applying severe plastic deformation. A literature survey reveals that, due to extreme instability of -MgH2 in transmission electron microscope (TEM), the physical parameters that researchers have studied are limited to particle size and grain size. By utilizing a cryogenic TEM sample holder, we extended the stability time of the hydride phase during TEM characterization. Milling for only 30 minutes resulted in a significant enhancement in desorption kinetics. A subsequent annealing cycle under pressurized hydrogen reverted the kinetics to its initial sluggish state. Cryo-TEM analysis of the milled hydride revealed that mechanical milling induces deformation twinning in the hydride microstructure. Milling did not alter the thermodynamics of desorption. Twins can enhance the kinetics by acting as preferential locations for the heterogeneous nucleation of metallic magnesium. We also looked at the phase transformation characteristics of desorption in MgH2. By using energy-filtered TEM, we investigated the morphology of the phases in a partially desorbed state. Our observations prove that desorption phase transformation in MgH2 is of nucleation and growth type, with a substantial energy barrier for nucleation. This is contrary to the generally assumed core-shell structure in most of the simulation models for this system. We also tested the hydrogen storage cycling behavior of bulk centimeter-scale Mg-Ti and Mg-SS multilayer composites synthesized by accumulative roll-bonding. Addition of either phase (Ti or SS) allows the reversible hydrogen sorption at 350C, whereas identically roll-bonded pure magnesium cannot be absorbed. In the composites the first cycle of absorption (also called activation) kinetics improve with increased number of fold and roll (FR) operations. With increasing FR operations the distribution of the Ti phase is progressively refined, and the shape of the absorption curve no longer remains sigmoidal. Up to a point, increasing the loading amount of the second phase also accelerates the kinetics. Microscopy analysis performed on 1-2 wt.% hydrogen absorbed composites demonstrates that MgH2 formed exclusively on various heterogeneous nucleation sites. During activation, MgH2 nucleation occurred at the Mg-hard phase interfaces. On the subsequent absorption cycles, heterogeneous nucleation primarily occurred in the vicinity of internal free surfaces such as cracks. / Materials Engineering
115

Nanoscale Osseointegration : Characterization of Biomaterials and their Interfaces with Electron Tomography

Grandfield, Kathryn January 2012 (has links)
Bone response is one of the key determining factors in the overall success of biomaterials intended for bone regeneration and osseointegration. Understanding the formation of bone at an implant surface may lead to the improved design of biomaterials for the future. However, due to the inhomogeneity of bone tissue at an interface, two-dimensional images often lack detail on the interfacial complexity. Furthermore, the increasing use of nanotechnology in the design and production of biomaterials demands characterization techniques on a similar nano length scale. While current analysis methods, such as X-ray tomography, transmission electron microscopy, focused ion beam microscopy and scanning electron microscopy, provide a basis for analysing biomaterials and biointerfaces, they are incapable of doing so with both nanometre resolution and three-dimensional clarity. In contrast, electron tomography may be used to characterize the three-dimensional structure of biomaterials and their interfaces to bone with nanometre resolution. In this work, hydroxyapatite scaffolds, and laser-modified titanium and Ti6Al4V implants were studied in contact with human or rabbit bone. Z-contrast electron tomography revealed that the orientation of collagen in bone apposing hydroxyapatite, titanium and Ti6Al4V implants is consistently parallel to the implant surface, where the bioactive layer that precipitates on HA is oriented perpendicular to the implant surface. With this method, complete three-dimensional nanoscale osseointegration of titanium-based implants was also established. The extension of this technique from interfacial analyses to the design of biomaterials provided an understanding of the pore structure of mesoporous titania. In further investigations, the open three-dimensional pore network, as revealed by electron tomography, showed promise as a coating that improves implant osseointegration and enables site-specific drug-delivery from an implant surface. In summary, it was demonstrated that two-dimensional characterization techniques were insufficient for the investigation of nanostructured biomaterials, as well as their interfaces to bone. Visualizing biointerfaces and biomaterials with nanometre precision in three-dimensions can expose new fundamental information on materials properties and bone response, enabling better design of biomaterials for the future.
116

Deformation behaviour of diamond-like carbon coatings on silicon substrates

Haq, Ayesha Jabeen, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
The deformation mechanisms operating in diamond-like carbon (DLC) coatings on (100) and (111) Si, has been investigated. The effect of coating thickness, indenter geometry, substrate orientation and deposition technique on the deformation of DLC coatings and the underlying substrate was studied by undertaking nanoindentation followed by subsurface microstructural characterization. Uncoated (111) Si was also investigated for comparison. The observed microstructural features were correlated to the indentation response of the coatings and compared with simulation studies, as well as observations on uncoated Si. In uncoated (111) Si, phase transformation was found to be responsible for the discontinuities in the load-displacement curves, similar to (100) Si. However, slip was activated on {311} planes instead of on {111} planes. Moreover, the density of defects was also significantly lower and their distribution asymmetric. The coatings were adherent, uniformly thick and completely amorphous. The load-displacement curves displayed several pop-ins and a pop-out, the indentation loads for the first pop-in and the pop-out depending primarily on the thickness of the coating. The coatings exhibited localized compressive deformation in the direction of loading without any through-thickness cracks. The extent of this localized deformation increased with indentation load. Hardness and thickness of the coatings and the geometry of the indenter influenced the magnitude of compressive strains. Harder and thinner coatings and a blunt indenter exhibited the minimum degree of deformation. Densification by rearrangement of molecules has been suggested as the mechanism responsible for plastic compression. At indentation loads corresponding to the first pop-in, (100) and (111) silicon substrates initially deformed by <111> and <311> slip respectively. Higher indentation loads caused phase transformation. Therefore, unlike in uncoated Si, dislocation nucleation in the Si substrate has been proposed as the mode responsible for the first pop-in. Subsequent pop-ins were attributed to further deformation by slip and twinning, phase transformation and extensive cracking (median and secondary cracks) of the substrate. The pop-out, however, was ascribed to phase transformation. Extensive deformation in the substrate, parallel to the interface, is attributed to the wider distribution of the stress brought about by the DLC coating. Good correlation was obtained between the nanoindentation response, microstructural features and simulation studies.
117

Development of copper-alumina composites for abrasive wear applications

Toth-Antal, Bence, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
Copper-alumina composites were developed for testing in abrasive wear applications. The composites featured a porous continuous ceramic-preform network infiltrated by a liquid metal to form the final consolidated composite. The liquid metal phase was pure copper. Six different ceramic preform variants were tested. Ceramic volume fractions of 40, 50 and 60% were used, of two preform types; one pure-alumina, and one with additional 2wt% copper(I) oxide (CU20), functioning as an infiltration aid, the effects of which were determined in a previous study; the copper-oxide reduced infiltration pressure and allowed the use of higher ceramic phase volume fraction in the final composite. Abrasive wear tests against two automotive braking system materials were conducted. Grey cast iron of alloy type GG15 was used to establish a baseline for behaviour of the six different composite samples and compare them. Following this, the three volume fraction variants of samples using the copper-oxide infiltration aid were trialled against a commercially-available European passenger vehicle brake pad friction material; ABEX 6091. Wear tests were conducted on a pin-on-disc tribometer. Hemispherical-headed pins were made from the composite and tested against rotating discs of the grey cast iron and the ABEX friction material. Contact velocity was kept constant at Ims-?? at room temperature in air, and contact loads up to 15N were used. Test loads of 1-4N were used against grey cast iron, and 15N against the ABEX friction material. Optical micrography was used to monitor the wear rate of samples tested against grey cast iron. Scanning electron microscopy (SEM) was used to characterise bulk microstructures and evaluate surface wear features. Transmission electron microscopy (TEM) was used for further microstructural investigation of the sintering and interfacial features of the undamaged pin samples, as well as damage zones and tribofilm compositions. Focussed ion beam (FIB) milling was used to create subsurface cross-sections of wear regions and prepare TEM samples. The wear performance of the different sample types was compared by ceramic content and preform additives. It was found that the wear resistance of pure-alumina preform composites was dependent on ceramic volume fraction. Increasing ceramic content lead to increased wear resistance. The lower sinter temperature of the samples with the copper oxide additive led to reduced wear resistance compared with the monolithic alumina preforms and changes in ceramic volume fractions were not discernable in wear resistance against grey cast iron. This could be further supported by qualitative micrographic observations. All tests against grey cast iron were dominated by tribochemical film formation, which was determined to be oxidation of the iron which formed at the composite pin contact surface. Further testing of the copper-oxide containing samples against the ABEX friction material revealed a mixed result; the 50 and 60% ceramic volume samples produced near-identical wear performance, while the 40% sample suffered poor wear resistance. The dominant wear mechanism of composite pins tested against the ABEX friction material was abrasive wear. Sub-surface analysis of wear pins revealed a prominent damage layer forming at the contact surface of all pin samples which progressively grew into the bulk material. This layer was believed to have an important effect on the wear behaviour of the materials.
118

Theoretical aspects of scanning transmission electron microscopy

Findlay, Scott David Unknown Date (has links) (PDF)
This thesis explores the theory describing wavefunctions and images, both elastic and inelastic, formed in scanning transmission electron microscopy. / A method is presented for calculating the elastic wavefunction based upon a new formulation of the boundary conditions which couples the probe to Bloch states within the crystal in a single step. Though this method is fundamentally equivalent to previous approaches based upon the superposition of wavefunctions corresponding to individual plane wave components in the incident probe, it provides new insight into the some of the dynamics, allows for efficient calculations, and proves useful for demonstrating well known results such as reciprocity relations. A formal inversion technique is also presented that uses a collection of diffraction plane data in scanning transmission electron microscopy to reconstruct the object potential, even in the presence of strong multiple scattering. / The new form of the boundary conditions allows for a generalization of a crosssection expression for calculating inelastic images, making use of the theory of mixed dynamic form factors. This enables the simulation of images for a range of inelastic mechanisms, including thermal scattering, used to simulate high-angle annular dark field imaging, and inner-shell ionization, used to simulate electron energy loss spectroscopy images. A multislice form of this expression is given. Selection between the methods can thus be based on the sample of interest: the Bloch wave method is very efficient when the sample is crystalline; the multislice method is more appropriate if the sample lacks periodicity. / The issue of cross-talk, where dynamical probe spreading may result in a signal containing contributions from several columns and therefore confound direct interpretation, is assessed for high-angle annular dark field imaging. Single atom images are simulated to provide an estimate of the localization of signal in electron energy loss spectroscopy, and confirm that the limitations of probe size generally outweigh those of the nature of the ionization interaction. The feasibility of column-by-column spectroscopic identification is demonstrated through a combination of experimental data and supporting calculations. Data demonstrating the location and spectroscopic identification of a single impurity atom in the bulk are supported by simulation and it is demonstrated that a quantitative comparison can offer further useful information: an estimate for the depth of the impurity. / The contribution to electron energy loss spectroscopy images from electrons which have undergone thermal scattering prior to causing an inner-shell ionization event is assessed. It is concluded that this contribution is significant in strongly scattering specimens imaged using fine probes. It will be necessary to include this contribution if quantitative comparisons are to be made.
119

Development of copper-alumina composites for abrasive wear applications

Toth-Antal, Bence, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
Copper-alumina composites were developed for testing in abrasive wear applications. The composites featured a porous continuous ceramic-preform network infiltrated by a liquid metal to form the final consolidated composite. The liquid metal phase was pure copper. Six different ceramic preform variants were tested. Ceramic volume fractions of 40, 50 and 60% were used, of two preform types; one pure-alumina, and one with additional 2wt% copper(I) oxide (CU20), functioning as an infiltration aid, the effects of which were determined in a previous study; the copper-oxide reduced infiltration pressure and allowed the use of higher ceramic phase volume fraction in the final composite. Abrasive wear tests against two automotive braking system materials were conducted. Grey cast iron of alloy type GG15 was used to establish a baseline for behaviour of the six different composite samples and compare them. Following this, the three volume fraction variants of samples using the copper-oxide infiltration aid were trialled against a commercially-available European passenger vehicle brake pad friction material; ABEX 6091. Wear tests were conducted on a pin-on-disc tribometer. Hemispherical-headed pins were made from the composite and tested against rotating discs of the grey cast iron and the ABEX friction material. Contact velocity was kept constant at Ims-?? at room temperature in air, and contact loads up to 15N were used. Test loads of 1-4N were used against grey cast iron, and 15N against the ABEX friction material. Optical micrography was used to monitor the wear rate of samples tested against grey cast iron. Scanning electron microscopy (SEM) was used to characterise bulk microstructures and evaluate surface wear features. Transmission electron microscopy (TEM) was used for further microstructural investigation of the sintering and interfacial features of the undamaged pin samples, as well as damage zones and tribofilm compositions. Focussed ion beam (FIB) milling was used to create subsurface cross-sections of wear regions and prepare TEM samples. The wear performance of the different sample types was compared by ceramic content and preform additives. It was found that the wear resistance of pure-alumina preform composites was dependent on ceramic volume fraction. Increasing ceramic content lead to increased wear resistance. The lower sinter temperature of the samples with the copper oxide additive led to reduced wear resistance compared with the monolithic alumina preforms and changes in ceramic volume fractions were not discernable in wear resistance against grey cast iron. This could be further supported by qualitative micrographic observations. All tests against grey cast iron were dominated by tribochemical film formation, which was determined to be oxidation of the iron which formed at the composite pin contact surface. Further testing of the copper-oxide containing samples against the ABEX friction material revealed a mixed result; the 50 and 60% ceramic volume samples produced near-identical wear performance, while the 40% sample suffered poor wear resistance. The dominant wear mechanism of composite pins tested against the ABEX friction material was abrasive wear. Sub-surface analysis of wear pins revealed a prominent damage layer forming at the contact surface of all pin samples which progressively grew into the bulk material. This layer was believed to have an important effect on the wear behaviour of the materials.
120

Strain relaxation and related phenomena in GaNAs and GaP films on GaAs substrates

Li, Yan. Weatherly, G.C. January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: G.C. Weatherly and M. Niewczas. Includes bibliographical references (leaves 171-177).

Page generated in 0.1196 seconds