• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Fabrication of Suspending Micro-thermoelectric Generator with Transmissivity and Parallel Array Structure

Ma, Ling-Yu 05 September 2011 (has links)
This thesis aimed to design and develop a novel micro-thermal electric generator (£g-TEG) with a transparent parallel-array bridge microstructure using the ANSYS finite element analysis software and Micro Electro Mechanical Systems (MEMS) technology. The presented £g-TEG can convert the temperature difference between the indoor and outdoor planes of building glass window into a useful electrical power. The thermoelectrically transferred output electrical power is suitable for recharging various mobile communication products. Conventional £g-TEG presented a high fabrication cost, low integration compatibility with IC processes and non-transparent characteristics. To improve these disadvantages, this research utilizes a batch production surface micromachining technology to implement the Poly-Si based parallel-array £g-TEG on a transparent quartz glass substrate and the main fabrication processes adopted in this research are including six thin-film deposition processes and five photolithography processes. The implemented Poly-Si based transparent £g-TEG has successfully demonstrates a maximum temperature difference of 1.38¢J between the hot plane (substrate) and cold plane (suspending microstructure), a maximum output voltage of 13.28 mV/cm2, a maximum output power of 110.22 nW/cm2 and a maximum light transmission of 40%.

Page generated in 0.1367 seconds