Spelling suggestions: "subject:"transplantation d'plots"" "subject:"transplantation d'slots""
1 |
The role of DcR3 in systemic lupus erythematosus and islet β-Cell viability and functionHan, Bing 07 1900 (has links)
Le récepteur DcR3 (Decoy receptor 3) est un membre de la famille des récepteurs aux facteurs de nécrose tumorale (TNF). Il est fortement exprimé dans les tissus humains normaux ainsi que les tumeurs malignes. DcR3 est un récepteur pour trois ligands de la famille du TNF tels que FasL, LIGHT et TL1A. Étant une protéine soluble donc dépourvue de la portion transmembranaire et intracytoplasmique, le récepteur DcR3 est incapable d’effectuer une transduction de signal intracellulaire à la suite de son interaction avec ses ligands. De ce fait, DcR3 joue un rôle de compétiteur pour ces derniers, afin d’inhiber la signalisation via leurs récepteurs fonctionnels tels que Fas, HVEM/LTbetaR et DR3.
Lors de nos précédentes études, nous avons pu démontrer, que DcR3 pouvaist moduler la fonction des cellules immunitaires, et aussi protéger la viabilité des îlots de Langerhans. À la suite de ces résultats, nous avons généré des souris DcR3 transgéniques (Tg) en utilisant le promoteur du gène β-actine humaine afin d’étudier plus amplement la fonction de ce récepteur.
Les souris Tg DcR3 ont finalement développé le syndrome lupus-like (SLE) seulement après l’âge de 6 mois. Ces souris présentent une variété d'auto-anticorps comprenant des anticorps anti-noyaux et anti-ADN. Elles ont également manifesté des lésions rénales, cutanées, hépatiques et hématopoïétiques. Contrairement aux modèles de lupus murin lpr et gld, les souris DcR3 sont plus proche du SLE humain en terme de réponse immunitaire de type Th2 et de production d'anticorps d'anti-Sm. En péus, nous avons constaté que les cellules hématopoïétiques produisant DcR3 sont suffisantes pour causer ces pathologies. DcR3 peut agir en perturbant l’homéostasie des cellules T pour interférer avec la tolérance périphérique, et ainsi induire l'autoimmunité.
Chez l'humain, nous avons détecté dans le sérum de patients SLE des niveaux élevés de la protéine DcR3. Chez certains patients, comme chez la souris, ces niveaux sont liés directement aux titres élevés d’IgE. Par conséquent, DcR3 peut représenter un facteur pathogénique important du SLE humain.
L’étude des souris Tg DcR3, nous a permis aussi d’élucider le mécanisme de protection des îlots de Langerhans. Le blocage de la signalisation des ligands LIGHT et TL1A par DcR3 est impliqué dans une telle protection. D'ailleurs, nous avons identifié par ARN microarray quelques molécules en aval de cette interaction, qui peuvent jouer un rôle dans le mécanisme d’action. Nous avons par la suite confirmé que Adcyap1 et Bank1 joue un rôle critique dans la protection des îlots de Langerhans médiée par DcR3.
Notre étude a ainsi élucidé le lien qui existe entre la signalisation apoptotique médiée par Fas/FasL et la pathogénèse du SLE humain. Donc, malgré l’absence de mutations génétiques sur Fas et FasL dans le cas de cette pathologie, DcR3 est capable de beoquer cette signalisation et provoquer le SLE chez l’humain. Ainsi, DcR3 peut simultanément interférer avec la signalisation des ligands LIGHT et TL1A et causer un phénotype plus complexe que les phénotypes résultant de la mutation de Fas ou de FasL chez certains patients. DcR3 peut également être utilisé comme paramètre diagnostique potentiel pour le SLE. Les découvertes du mécanisme de protection des îlots de Langerhans par DcR3 ouvrent la porte vers de nouveaux horizons afin d'explorer de nouvelles cibles thérapeutiques pour protéger la greffe d'îlots. / Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor (TNF) receptor family, and is widely expressed in human normal tissues and malignant tumors. It is a decoy receptor of three TNF family members, i.e., FasL, LIGHT and TL1A. The interaction of DcR3 and its ligands will not transmit signal into cells via DcR3 because DcR3 is a soluble protein without a transmembrane and intracellular segment. Thereby, DcR3 competitively inhibits signaling through three functional receptors, i.e., Fas, HVEM/LTbetaR and DR3.
In previous studies, we found that DcR3 could modulate immune cell function, and protect islet viability. Herein, we generated DcR3 transgenic (Tg) mice driven by the human β-actin promoter to further investigate the function of DcR3.
Interestingly, the DcR3 Tg mice developed a lupus-like syndrome at 6 months of age. They presented a variety of autoantibodies including anti-nucleus and anti-dsDNA antibodies. They also manifested renal, dermal, hepatic and hematopoietic lesions. Compared to lpr and gld mouse lupus models, DcR3 Tg mice more closely resembled human SLE in terms of Th2-biased immune response and anti-Sm antibody production. Furthermore, we found that DcR3-producing hematopoietic cell were sufficient to cause these pathological changes. Mechanistically, DcR3 may break T-cell homeostasis to interfere with peripheral tolerance, and then induce autoimmunity.
In humans, we detected high DcR3 levels in SLE patient sera. The high DcR3 levels were related to elevated IgE titer in some SLE patients, as was the case in the mouse model. Therefore, DcR3 may represent an important pathogenetic factor of human SLE.
Utilizing the DcR3 Tg mouse, we further elucidated the mechanism by which DcR3 protected islets from primary nonfunction (PNF). Blocking of LIGHT and TL1A signaling by DcR3 are involved in such protection. Moreover, by mRNA microarray we identified possible downstream molecules, which may mediate such protection. We confirmed that Adcyap1 and Bank1 played critical roles in mediating DcR3’s effect in islet protection.
Our studies resolved a puzzle about the relationship between the Fas/FasL apoptosis signaling pathway and the pathogenesis of human SLE. DcR3 can block Fas/FasL pathway even if there is no genetic mutation in Fas and FasL. DcR3 can simultaneously interfere with LIGHT and TL1A signaling to cause a more complex phenotype than the simple Fas or FasL mutation in patients. DcR3 can also be employed as a potential diagnostic parameter for SLE. The discovery of the mechanism of DcR3 in protecting islets allows us to explore novel therapeutic targets to protect islet graft.
|
2 |
The role of DcR3 in systemic lupus erythematosus and islet β-Cell viability and functionHan, Bing 07 1900 (has links)
Le récepteur DcR3 (Decoy receptor 3) est un membre de la famille des récepteurs aux facteurs de nécrose tumorale (TNF). Il est fortement exprimé dans les tissus humains normaux ainsi que les tumeurs malignes. DcR3 est un récepteur pour trois ligands de la famille du TNF tels que FasL, LIGHT et TL1A. Étant une protéine soluble donc dépourvue de la portion transmembranaire et intracytoplasmique, le récepteur DcR3 est incapable d’effectuer une transduction de signal intracellulaire à la suite de son interaction avec ses ligands. De ce fait, DcR3 joue un rôle de compétiteur pour ces derniers, afin d’inhiber la signalisation via leurs récepteurs fonctionnels tels que Fas, HVEM/LTbetaR et DR3.
Lors de nos précédentes études, nous avons pu démontrer, que DcR3 pouvaist moduler la fonction des cellules immunitaires, et aussi protéger la viabilité des îlots de Langerhans. À la suite de ces résultats, nous avons généré des souris DcR3 transgéniques (Tg) en utilisant le promoteur du gène β-actine humaine afin d’étudier plus amplement la fonction de ce récepteur.
Les souris Tg DcR3 ont finalement développé le syndrome lupus-like (SLE) seulement après l’âge de 6 mois. Ces souris présentent une variété d'auto-anticorps comprenant des anticorps anti-noyaux et anti-ADN. Elles ont également manifesté des lésions rénales, cutanées, hépatiques et hématopoïétiques. Contrairement aux modèles de lupus murin lpr et gld, les souris DcR3 sont plus proche du SLE humain en terme de réponse immunitaire de type Th2 et de production d'anticorps d'anti-Sm. En péus, nous avons constaté que les cellules hématopoïétiques produisant DcR3 sont suffisantes pour causer ces pathologies. DcR3 peut agir en perturbant l’homéostasie des cellules T pour interférer avec la tolérance périphérique, et ainsi induire l'autoimmunité.
Chez l'humain, nous avons détecté dans le sérum de patients SLE des niveaux élevés de la protéine DcR3. Chez certains patients, comme chez la souris, ces niveaux sont liés directement aux titres élevés d’IgE. Par conséquent, DcR3 peut représenter un facteur pathogénique important du SLE humain.
L’étude des souris Tg DcR3, nous a permis aussi d’élucider le mécanisme de protection des îlots de Langerhans. Le blocage de la signalisation des ligands LIGHT et TL1A par DcR3 est impliqué dans une telle protection. D'ailleurs, nous avons identifié par ARN microarray quelques molécules en aval de cette interaction, qui peuvent jouer un rôle dans le mécanisme d’action. Nous avons par la suite confirmé que Adcyap1 et Bank1 joue un rôle critique dans la protection des îlots de Langerhans médiée par DcR3.
Notre étude a ainsi élucidé le lien qui existe entre la signalisation apoptotique médiée par Fas/FasL et la pathogénèse du SLE humain. Donc, malgré l’absence de mutations génétiques sur Fas et FasL dans le cas de cette pathologie, DcR3 est capable de beoquer cette signalisation et provoquer le SLE chez l’humain. Ainsi, DcR3 peut simultanément interférer avec la signalisation des ligands LIGHT et TL1A et causer un phénotype plus complexe que les phénotypes résultant de la mutation de Fas ou de FasL chez certains patients. DcR3 peut également être utilisé comme paramètre diagnostique potentiel pour le SLE. Les découvertes du mécanisme de protection des îlots de Langerhans par DcR3 ouvrent la porte vers de nouveaux horizons afin d'explorer de nouvelles cibles thérapeutiques pour protéger la greffe d'îlots. / Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor (TNF) receptor family, and is widely expressed in human normal tissues and malignant tumors. It is a decoy receptor of three TNF family members, i.e., FasL, LIGHT and TL1A. The interaction of DcR3 and its ligands will not transmit signal into cells via DcR3 because DcR3 is a soluble protein without a transmembrane and intracellular segment. Thereby, DcR3 competitively inhibits signaling through three functional receptors, i.e., Fas, HVEM/LTbetaR and DR3.
In previous studies, we found that DcR3 could modulate immune cell function, and protect islet viability. Herein, we generated DcR3 transgenic (Tg) mice driven by the human β-actin promoter to further investigate the function of DcR3.
Interestingly, the DcR3 Tg mice developed a lupus-like syndrome at 6 months of age. They presented a variety of autoantibodies including anti-nucleus and anti-dsDNA antibodies. They also manifested renal, dermal, hepatic and hematopoietic lesions. Compared to lpr and gld mouse lupus models, DcR3 Tg mice more closely resembled human SLE in terms of Th2-biased immune response and anti-Sm antibody production. Furthermore, we found that DcR3-producing hematopoietic cell were sufficient to cause these pathological changes. Mechanistically, DcR3 may break T-cell homeostasis to interfere with peripheral tolerance, and then induce autoimmunity.
In humans, we detected high DcR3 levels in SLE patient sera. The high DcR3 levels were related to elevated IgE titer in some SLE patients, as was the case in the mouse model. Therefore, DcR3 may represent an important pathogenetic factor of human SLE.
Utilizing the DcR3 Tg mouse, we further elucidated the mechanism by which DcR3 protected islets from primary nonfunction (PNF). Blocking of LIGHT and TL1A signaling by DcR3 are involved in such protection. Moreover, by mRNA microarray we identified possible downstream molecules, which may mediate such protection. We confirmed that Adcyap1 and Bank1 played critical roles in mediating DcR3’s effect in islet protection.
Our studies resolved a puzzle about the relationship between the Fas/FasL apoptosis signaling pathway and the pathogenesis of human SLE. DcR3 can block Fas/FasL pathway even if there is no genetic mutation in Fas and FasL. DcR3 can simultaneously interfere with LIGHT and TL1A signaling to cause a more complex phenotype than the simple Fas or FasL mutation in patients. DcR3 can also be employed as a potential diagnostic parameter for SLE. The discovery of the mechanism of DcR3 in protecting islets allows us to explore novel therapeutic targets to protect islet graft.
|
3 |
Development and validation of perfusion bioreactor process conditions for the culture of pancreatic tissue / Développement et validation des conditions d’un procédé en bioréacteur à perfusion pour la culture de tissus pancréatiquesSharp, Jamie January 2017 (has links)
La transplantation d’îlots pancréatiques offre un traitement potentielle pour le diabète de type
1 (T1DM). À ce jour, le succès mitigé de ce type de greffe est dû à plusieurs facteurs limitants
comme le manque de revascularisation, la perte de la matrice extracellulaire (ECM) et le rejet
par le système immunitaire du receveur. Dans les dernières années, l’utilisation de matrices
tridimensionnelles (3D) et de bioréacteurs a amélioré le processus de transplantation et
approfondi les connaissances sur le sujet. Le but de cette thèse est de mieux comprendre les
effets des paramètres physiologiques (flux, concentration en oxygène dissous (D.O.) et
pulsation) sur le tissu pancréatique dans un environnement 3D en utilisant un bioréacteur à
perfusion.
Le premier chapitre présente une revue de la littérature détaillant le pancréas, les maladies qui
lui sont associées ainsi que les techniques permettant son étude in vitro et in vivo. L’utilisation
de matrices 3D en recherche sur le diabète est discutée en profondeur tout en mettant
l’emphase sur l’incorporation de molécules de la ECM. La revue souligne comment des
matrices 3D testées en combinaison avec différents bioréacteurs ont permis de mieux
comprendre et améliorer la culture de cellules pancréatiques. Une brève conclusion met en
lumière les applications futures des bioréacteurs dans la recherche sur le diabète.
La première étude de cette thèse traite de la culture de cellules de rat provenant d’insulinome
(INS-1), encapsulées dans des matrices de fibrine en chambres de perfusion et cultivées dans
un bioréacteur à perfusion. Un essai in situ de sécrétion d’insuline stimulée par le glucose fut
développé pour comprendre les effets de la culture. Dans cette expérience, les effets
bénéfiques des conditions contrôlées en bioréacteur à perfusion ont été démontrés et ont
révélé une augmentation de l`indice de stimulation des cellules INS-1 avec le temps, une
amélioration de la fonction GRIP, en plus d’une incidence moins élevée d’apoptose cellulaire
en comparaison avec des témoins en culture statique, sans bioréacteur. Cette étude a été
publiée dans la revue Biotechnology Progress.
La deuxième étude décrit un design multifactoriel servant à l’identification des paramètres
affectant des pancréas de rat dissociés mécaniquement, cultivés dans un bioréacteur à
perfusion. Les effets uniques et combinés du flux, de la D.O. et de la pulsation ont été étudiés
sur la culture de tissu pancréatique. Les conditions bénéfiques pour la culture en bioréacteur
ont été identifiées. Le tissu pancréatique cultivé dans ces conditions bénéfiques a démontré
une sécrétion d’insuline stimulée par le glucose, une plus grande activité métabolique, une
coloration positive à l’insuline et au glucagon, des structures endothéliales multiples ainsi
qu’un tissu plus intact en comparaison avec des cultures statiques cultivées en mode statique.
Cette étude a été soumise à Biotechnology Progress. / Abstract : Transplantation of pancreatic islets offers a potential cure for type 1 diabetes mellitus (T1DM). To date, the success of such a graft has been mired by a number of limiting factors including lack of revascularisation, loss of native extracellular matrix (ECM), and graft rejection by the recipient’s immune system. In recent years, new ways to understand and improve this process have been explored using three-dimensional (3D) matrices and bioreactors. This thesis aims to further understand the important effect(s) physiological parameters (flow, dissolved oxygen concentration (D.O.) and pulsation) have on pancreatic tissue in a 3D environment using a perfusion bioreactor with defined geometries.
The first chapter introduces a review of the literature detailing the native pancreas, its diseases, and how it is studied in vivo and in vitro. The use of 3D matrices in diabetes research is discussed with particular emphasis on the incorporation of ECM molecules. The review then highlights how 3D matrices have been used in combination with a host of different bioreactors to understand and improve pancreatic cell cultures. A brief conclusion about the future applications for the use of bioreactors in diabetes research is also discussed.
The first experimental work comprises the culture of rat insulinoma cells (INS-1) encapsulated in fibrin matrices in perfusion chambers and cultured under perfusion bioreactor conditions. An in situ glucose-stimulated insulin secretion assay was then developed to monitor the culture over time. With this work, the beneficial effects of perfusion bioreactor conditions were shown and revealed increasing functionality (glucose-stimulated insulin secretion) of INS-1 cells over time, and a lower incidence of apoptosis when compared to static control cultures. This study was published in Biotechnology Progress.
The second experimental work used a factorial design to identify process parameters affecting whole mechanically-disrupted rat pancreata in a perfusion bioreactor. Here, the singular and combinational effects of flow, dissolved oxygen concentration and pulsation were assessed on the outcome of pancreatic tissue. Beneficial bioreactor conditions were identified. Mechanically-disrupted rat pancreata cultured under these beneficial bioreactor conditions showed glucose-stimulated insulin secretion, higher metabolic activity, insulin- and glucagon-positive staining, extensive endothelial structures, and overall intact tissue when compared to static cultures. This study has been submitted to Biotechnology Progress.
|
4 |
Stratégies de préservation et d'immunoprotection du greffon dans un modèle de transplantation d'îlots pancréatiques / Strategies for great preservation and immunoprotection in a model of pancreatic islets transplantationGiraud, Sébastien 10 June 2013 (has links)
Actuellement les transplanteurs sont confrontés à une pénurie de greffons, conduisant à l'élargissement des critères de choix des donneurs. Cette démographie fait place à des greffons plus sensibles aux lésions d'ischémie-reperfusion (I/R). Ces lésions conduisent à des dysfonctions de reprises de fonction des greffons, et participent à l'augmentation de l'immunogénicité du greffon et à l'emergence de rejets aigus et chroniques. Dans un premier temps, il est donc nécessaire de limiter les lésions d'I/R et conserver l'intégrité du greffon. Dans un deuxième temps, il est important de réduire l'immunogénicité du greffon et de contrôler le rejet de greffe tout en maintenant le receveur immunocompétent. Afin de limiter les lésions d'I/R nous avons évalué la solution de préservation SCOT de type extracellulaire contenant 30g/L de PEG 20kDa, dans un modèle murin d'isolement et de transplantation d'îlots pancréatiques. L'amélioration des conditions de conservation a permit de préserver l'intégrité des îlots et de réduire l'immunogénicité du greffon, et ce due aux propriétés immunoprotectrices des PEG 20kDa (effets obtenus pour 10 à 30g/L). Dans ce même modèle notre second objectif était d'établir un état de tolérance périphérique par déplétion transitoire des lymphocytes T alloréactifs. La déplétion des lymphocytes T en division a été induite au moment de l'allotransplantation des îlots, par administration transitoire d'un analogue nucleosidique inductible. La déplétion transitoire a permit d'aboutir à une immunotolérance dominante via l'émergence de lymphocytes T régulateurs CD4+CD25+FoxP3+, cellules ouvrant de nouvelles perspectives dans l'inhibition des rejets d'allogreffes. / Organ and tissue transplantation is affected by a shortage of grafts, leading to enlargement of donor criteria. Consequently, these new marginal organs are more susceptible to ischemia-reperfusion injury (IRI). IRI increases primary graft dysfunctions and contributes to increase graft immunogenicity and consequently the occurence of acute and chronic rejection. Our objectives were : firstly, the necessity to limit I/R damages and preserve graft integrity, secondly, the importance to reduce graft immunogenicity and control the graft rejection while maintaining an immunocompetent recipient. To limit IRI we evaluated the new SCOT preservation extracellular type solution containing PEG 20kDa 30g/L in a murine model of pancreatic islets isolation and transplantation. The improvement of conservation with SCOT permitted to maintain the islets integrity and to reduce graft immunogenicity, due to the immunoprotective properties of PEG 20kDa (effects obtained with PEG 20kDa at 10 to 30g /L). In this same model our second objective was to establish a peripheral immunological tolerance of the graft by transient depletion of alloreactive T cells. This depletion of T cells in division was induced at the time of islet allotransplantation by an administration of an inducible nucleosidic analogue during 14 days. Transient alloreactive T cells depletion induced a dominant immunotolerance marked by the emergence of a persistent regulatory T cells CD4+CD25+FoxP3+ population. Thus, regulation of homeostatic balance between effector and regulatory T cells could open an interesting way to control the immune reaction against allograft.
|
5 |
Biocompatibilité des microcapsules d'alginate : purification d'alginate, réaction immunitaire de l'hôte et protection du receveurDusseault, Julie 08 1900 (has links)
L’immuno-isolation des îlots de Langerhans est proposée comme moyen d’effectuer des transplantations sans prise d’immunosuppresseurs par le patient. Cette immuno-isolation, par l’entremise d’une microcapsule composée d’alginate et de poly-L-lysine (microcapsule APA), protège le greffon d’une éventuelle attaque du système immunitaire du receveur grâce à sa membrane semi-perméable. Cette membrane empêche le système immunitaire du receveur de pénétrer la microcapsule tout en laissant diffuser librement les nutriments, le glucose et l’insuline. Avant l’application de cette technique chez l’humain, quelques défis doivent encore être relevés, dont la biocompatibilité de ce système. La biocompatibilité fait ici référence à la biocompatibilité du biomatériau utilisé pour la fabrication des microcapsules, l’alginate, mais aussi la biocompatibilité des microcapsules reliée à leur stabilité. En effet, il a été remarqué que, lors d’implantation in vivo de microcapsules fabriquées avec de l’alginate non purifiée, ceci induisait un phénomène nommé Réaction de l’Hôte contre la Microcapsule (RHM). De plus, il est connu que la stabilité des microcapsules APA peut influencer leur biocompatibilité puisqu’une microcapsule endommagée ou brisée pourrait laisser s’échapper les cellules du greffon chez le receveur. Nous croyons qu’une compréhension des processus d’initiation de la RHM en fonction de l’efficacité des procédés de purification d’alginate (et donc des quantités de contaminants présents dans l’alginate) ainsi que l’augmentation de la stabilité des microcapsules APA pourront améliorer la biocompatibilité de ce dispositif, ce que tente de démontrer les résultats présentés dans cette thèse. En effet, les résultats obtenus suggèrent que les protéines qui contaminent l’alginate jouent un rôle clé dans l’initiation de la RHM et qu’en diminuant ces quantités de protéines par l’amélioration des procédés de purification d’alginate, on améliore la biocompatibilité de l’alginate. Afin d’augmenter la stabilité des microcapsules APA, nous décrivons une nouvelle technique de fabrication des microcapsules qui implique la présence de liaisons covalentes. Ces nouvelles microcapsules APA réticulées sont très résistantes, n’affectent pas de façon négative la survie des cellules encapsulées et confinent les cellules du greffon à l’intérieur des microcapsules. Cette dernière caractéristique nous permet donc d’augmenter la biocompatibilité des microcapsules APA en protégeant le receveur contre les cellules du greffon. / Islet of Langerhans inmmunoisolation is proposed as a way to avoid the use of immunosuppressive drugs after transplantation. Microcapsules, the immuno-isolating device, are composed of alginate and poly-L-lysine and the protection of the graft is granted by a semi-permeable membrane. This membrane allows small molecules to freely diffuse within the microcapsule, such as nutrients, glucose and insulin while protecting the graft against the host immune system. Biocompatibility is one of the challenges that must be addressed before the successful clinical application of this device. Microcapsules biocompatibility is related, first, to the biocompatibility of alginate, the polymer used to made microcapsules and second, to the in vivo stability of these microcapsules. In facts, it is well know that the use of an unpurified alginate containing many foreign contaminants to make microcapsules induce the host reaction against microcapsule (HRM). Moreover, damaged or broken microcapsules can allow the dissemination of cells from the encapsulated graft, activating the host immune system. We believe that a better understanding of the initiation processes of the HRM in terms of alginate purification efficacy to remove contamination as well as an improve microcapsule stability will increase microcapsules biocompatibility. Results reported in this thesis suggest that foreign proteins found in alginate are playing a key role in the initiation of HRM and that the reduction of these foreign proteins, by the improvement of alginate purification processes, improves microcapsules biocompatibility. In order to increase microcapsules stability, we also described and characterized an innovative type of microcapsules which involve covalent bonds. These covalently cross-linked microcapsules were found to by highly resistant and stable. The novel fabrication process of these microcapsules was not harmful for the encapsulated cell survival and was also found to confine the graft inside the microcapsules. This characteristic enables us to increase microcapsules biocompatibility by the protection of the host from the encapsulated cells.
|
6 |
Biocompatibilité des microcapsules d'alginate : purification d'alginate, réaction immunitaire de l'hôte et protection du receveurDusseault, Julie 08 1900 (has links)
L’immuno-isolation des îlots de Langerhans est proposée comme moyen d’effectuer des transplantations sans prise d’immunosuppresseurs par le patient. Cette immuno-isolation, par l’entremise d’une microcapsule composée d’alginate et de poly-L-lysine (microcapsule APA), protège le greffon d’une éventuelle attaque du système immunitaire du receveur grâce à sa membrane semi-perméable. Cette membrane empêche le système immunitaire du receveur de pénétrer la microcapsule tout en laissant diffuser librement les nutriments, le glucose et l’insuline. Avant l’application de cette technique chez l’humain, quelques défis doivent encore être relevés, dont la biocompatibilité de ce système. La biocompatibilité fait ici référence à la biocompatibilité du biomatériau utilisé pour la fabrication des microcapsules, l’alginate, mais aussi la biocompatibilité des microcapsules reliée à leur stabilité. En effet, il a été remarqué que, lors d’implantation in vivo de microcapsules fabriquées avec de l’alginate non purifiée, ceci induisait un phénomène nommé Réaction de l’Hôte contre la Microcapsule (RHM). De plus, il est connu que la stabilité des microcapsules APA peut influencer leur biocompatibilité puisqu’une microcapsule endommagée ou brisée pourrait laisser s’échapper les cellules du greffon chez le receveur. Nous croyons qu’une compréhension des processus d’initiation de la RHM en fonction de l’efficacité des procédés de purification d’alginate (et donc des quantités de contaminants présents dans l’alginate) ainsi que l’augmentation de la stabilité des microcapsules APA pourront améliorer la biocompatibilité de ce dispositif, ce que tente de démontrer les résultats présentés dans cette thèse. En effet, les résultats obtenus suggèrent que les protéines qui contaminent l’alginate jouent un rôle clé dans l’initiation de la RHM et qu’en diminuant ces quantités de protéines par l’amélioration des procédés de purification d’alginate, on améliore la biocompatibilité de l’alginate. Afin d’augmenter la stabilité des microcapsules APA, nous décrivons une nouvelle technique de fabrication des microcapsules qui implique la présence de liaisons covalentes. Ces nouvelles microcapsules APA réticulées sont très résistantes, n’affectent pas de façon négative la survie des cellules encapsulées et confinent les cellules du greffon à l’intérieur des microcapsules. Cette dernière caractéristique nous permet donc d’augmenter la biocompatibilité des microcapsules APA en protégeant le receveur contre les cellules du greffon. / Islet of Langerhans inmmunoisolation is proposed as a way to avoid the use of immunosuppressive drugs after transplantation. Microcapsules, the immuno-isolating device, are composed of alginate and poly-L-lysine and the protection of the graft is granted by a semi-permeable membrane. This membrane allows small molecules to freely diffuse within the microcapsule, such as nutrients, glucose and insulin while protecting the graft against the host immune system. Biocompatibility is one of the challenges that must be addressed before the successful clinical application of this device. Microcapsules biocompatibility is related, first, to the biocompatibility of alginate, the polymer used to made microcapsules and second, to the in vivo stability of these microcapsules. In facts, it is well know that the use of an unpurified alginate containing many foreign contaminants to make microcapsules induce the host reaction against microcapsule (HRM). Moreover, damaged or broken microcapsules can allow the dissemination of cells from the encapsulated graft, activating the host immune system. We believe that a better understanding of the initiation processes of the HRM in terms of alginate purification efficacy to remove contamination as well as an improve microcapsule stability will increase microcapsules biocompatibility. Results reported in this thesis suggest that foreign proteins found in alginate are playing a key role in the initiation of HRM and that the reduction of these foreign proteins, by the improvement of alginate purification processes, improves microcapsules biocompatibility. In order to increase microcapsules stability, we also described and characterized an innovative type of microcapsules which involve covalent bonds. These covalently cross-linked microcapsules were found to by highly resistant and stable. The novel fabrication process of these microcapsules was not harmful for the encapsulated cell survival and was also found to confine the graft inside the microcapsules. This characteristic enables us to increase microcapsules biocompatibility by the protection of the host from the encapsulated cells.
|
7 |
Identification des mécanismes cellulaires et moléculaires à l'origine de la perte précoce des îlots pancréatiques au cours de la transplantationVivot, Kevin 28 September 2012 (has links) (PDF)
De l'isolement des îlots pancréatiques à leur implantation, l'inflammation est omniprésente au cours de la transplantation d'îlots pancréatiques. Le maintien d'une inflammation contrôlée est essentiel pour préserver la survie et la fonctionnalité du greffon à court et long terme. L'objectif de ce travail de thèse est d'identifier précisément les mécanismes inflammatoires à l'origine de la perte précoce des îlots et de déterminer des cibles thérapeutiques pour limiter ces réactions inflammatoires.Nous avons ainsi démontré que les conditions de culture induisent des réactions à l'origine du développement d'un phénotype pro-inflammatoire et pro-oxydant propre à l'îlot. Cette induction se caractérise par une élévation de la sécrétion de cytokines, de chimiokines pro-inflammatoires, une activation des voies de l'inflammation Toll-like récepteurs (TLRs)-dépendantes et une génération d'espèces réactives de l'oxygène (ROS). Toutefois, ce processus peut être prévenu par l'activation de l'Hème oxygénase-1 (HO-1), une enzyme anti-oxydante et anti-inflammatoire.Par l'étude des réactions inflammatoires sur un modèle animal de transplantation mimant les conditions de transplantation humaine, nous avons démontré qu'un changement des médiateurs plasmatiques de l'inflammation et du protéome hépatique s'opère 12 heures après transplantation. De plus, ces résultats sont associés à une infiltration des îlots par les cellules immunitaires qui s'organise 12 heures après transplantation. Nous avons également établi le rôle anti-inflammatoire de la rapamycine (une drogue immunomodulatrice) sur les îlots et les macrophages in vitro. Nous avons ainsi démontré que l'usage de la rapamycine avec la mise en place d'un pré-traitement des îlots et du receveur avant la greffe serait envisageable. Ces travaux ont permis de caractériser les mécanismes inflammatoires mis en oeuvre immédiatement avant et après transplantation. Ainsi, ces données offrent de nouvelles pistes thérapeutiques susceptibles de prévenir et/ou limiter l'inflammation au cours de la transplantation d'îlots pancréatiques.
|
Page generated in 0.136 seconds