• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geology of the Palaeoproterozoic Daspoort Formation (Pretoria Group, Transvaal Supergroup), South Africa

Bartman, R.D. (Reynard Dirk) January 2013 (has links)
This thesis examines the geology of the Daspoort Formation (Pretoria Group, Transvaal Supergroup) of South Africa, with the accent on describing and interpreting its sedimentology. The Palaeoproterozoic Daspoort Formation (c. 2.1‐2.2 Ga) forms part of the Pretoria Group on the Kaapvaal craton. This sandstone‐ and quartzite‐dominated lithological formation covers an elliptical geographical area stretching from the Botswana border in the west to the Drakensberg escarpment in the east, with its northern limit in the Mokopane (Potgietersrus) area and Pretoria in the south; altered outliers are also found in the overturned units of the Vredefort dome in the Potchefstroom area. Deposition of the Daspoort Formation was in a postulated intracratonic basin which applies equally to the entire Transvaal Supergroup succession in the Transvaal depository. Various characteristics from the formation, such as sedimentary architectural elements (e.g., channel–fills etc.), maturity trends and distribution of lithofacies assemblages across the preserved basin give insight into the developing conditions during deposition and genesis of the Daspoort Formation. Subordinate evidence from basic geochemistry, ripple mark data and optical microscope petrology studies support the sedimentary setting inferred for this Palaeoproterozoic deposit. Fluvial and epeiric marine conditions prevailed during the deposition of the Daspoort clastic sediments into the intracratonic basin. This shallow epeiric sea was fed by fluvial influx, predominantly from the west when a transgressive regional systems tract led to the filling of the basin, evolving into the deeper marine Silverton Formation setting, laid down above the Daspoort. Transgression from the east (marine facies predominate) to the west (fluvial facies) is supported by cyclical trends, palaeoenvironmental and palaeogeographical interpretations. Accompanying poorly preserved microbial mat features contribute to the postulated shallow marine environment envisaged for the eastern part of the basin whereas ripple marks and grain size distribution support a fluvial setting for the west, with lithofacies assemblages accounting for both areas’ depositional interpretation. / Dissertation (MSc)--University of Pretoria, 2013. / tm2014 / Geology / Unrestricted
2

Carbonate petrography and geochemistry of BIF of the Transvaal supergroup : evaluating the potential of iron carbonates as proxies for palaeoproterozoic ocean chemistry

Rafuza, Sipesihle January 2015 (has links)
The subject of BIF genesis, particularly their environmental conditions and ocean chemistry at the time of deposition and their evolution through time, has been a subject of much contentiousness, generating a wealth of proposed genetic models and constant refinements thereof over the years. The prevailing paradigm within the various schools of thought, is the widespread and generally agreed upon depositional and diagenetic model(s) which advocate for BIF deposition under anoxic marine conditions. According to the prevailing models, the primary depositional environment would have involved a seawater column whereby soluble Fe²⁺ expelled by hydrothermal activity mixed with free O₂ from the shallow photic zone produced by eukaryotes, forming a high valence iron oxy-hydroxide precursor such as FeOOH or Fe(OH)₃. An alternative biological mechanism producing similar ferric precursors would have been in the form of photo-ferrotrophy, whereby oxidation of ferrous iron to the ferric form took place in the absence of biological O₂ production. Irrespective of the exact mode of primary iron precipitation (which remains contentious to date), the precipitated ferric oxy-hydroxide precursor would have reacted with co-precipitated organic matter, thus acting as a suitable electron acceptor for organic carbon remineralisation through Dissimilatory Iron Reduction (DIR), as also observed in many modern anoxic diagenetic environments. DIR-dominated diagenetic models imply a predominantly diagenetic influence in BIF mineralogy and genesis, and use as key evidence the low δ¹³C values relative to the seawater bicarbonate value of ~0 ‰, which is also thought to have been the dissolved bicarbonate isotope composition in the early Precambrian oceans. The carbon for diagenetic carbonate formation would thus have been sourced through a combination of two end-member sources: pore-fluid bicarbonate at ~0 ‰ and particulate organic carbon at circa -28 ‰, resulting in the intermediate δ¹³C values observed in BIFs today. This study targets 65 drillcore samples of the upper Kuruman and Griquatown BIF from the lower Transvaal Supergroup in the Hotazel area, Northern Cape, South Africa, and sets out to explore key aspects in BIF carbonate petrography and geochemistry that are pertinent to current debates surrounding their interpretation with regard to primary versus diagenetic processes. The focus here rests on applications of carbonate (mainly siderite and ankerite) petrography, mineral chemistry, bulk and mineral-specific carbon isotopes and speciation analyses, with a view to obtaining valuable new insights into BIF carbonates as potential records of ocean chemistry for their bulk carbonate-carbon isotope signature. Evaluation of the present results is done in light of pre-existing, widely accepted diagenetic models against a proposed water-column model for the origin of the carbonate species in BIF. The latter utilises a combination of geochemical attributes of the studied carbonates, including the conspicuous Mn enrichment and stratigraphic variability in Mn/Fe ratio of the Griquatown BIF recorded solely in the carbonate fraction of the rocks. Additionally, the carbon isotope signatures of the Griquatown BIF samples are brought into the discussion and provide insights into the potential causes and mechanisms that may have controlled these signatures in a diagenetic versus primary sedimentary environment. Ultimately, implications of the combined observations, findings and arguments presented in this thesis are presented and discussed with particular respect to the redox evolution and carbon cycle of the ocean system prior to the Great Oxidation Event (GOE). A crucial conclusion reached is that, by contrast to previously-proposed models, diagenesis cannot singularly be the major contributing factor in BIF genesis at least with respect to the carbonate fraction in BIF, as it does not readily explain the carbon isotope and mineral-chemical signatures of carbonates in the Griquatown and uppermost Kuruman BIFs. It is proposed instead that these signatures may well record water-column processes of carbon, manganese and iron cycling, and that carbonate formation in the water column and its subsequent transfer to the precursor BIF sediment constitutes a faithful record of such processes. Corollary to that interpretation is the suggestion that the evidently increasing Mn abundance in the carbonate fraction of the Griquatown BIF up-section would point to a chemically evolving depositional basin with time, from being mainly ferruginous as expressed by Mn-poor BIFs in the lower stratigraphic sections (i.e. Kuruman BF) to more manganiferous as recorded in the upper Griquatown BIF, culminating in the deposition of the abnormally enriched in Mn Hotazel BIF at the stratigraphic top of the Transvaal Supergroup. The Paleoproterozoic ocean must therefore have been characterised by long-term active cycling of organic carbon in the water column in the form of an ancient biological pump, albeit with Fe(III) and subsequently Mn(III,IV) oxy-hydroxides being the key electron acceptors within the water column. The highly reproducible stratigraphic isotope profiles for bulk δ¹³C from similar sections further afield over distances up to 20 km, further corroborate unabatedly that bulk carbonate carbon isotope signatures record water column carbon cycling processes rather than widely-proposed anaerobic diagenetic processes.
3

Stratigraphic and geochemical framework of the Palaeoproterozoic rise in atmospheric oxygen, Transvaal Supergroup (South Africa)

Warke, Matthew January 2017 (has links)
The Transvaal Supergroup (South Africa) records evidence of trace oxygen production in late Neoarchaean strata, approximately 200 million years before the 'Great Oxidation Event' (GOE) which is recorded within the Palaeoproterozoic Duitschland Formation (Transvaal Supergroup) between ~2.42 and 2.32 Ga. It is hypothesized that there was a secular rise in oxygen concentrations between the late Neoarchaean and the GOE which may be recorded within the 'mid-Transvaal' Supergroup (Tongwane Formation, Duitschland Formation, Koegas Subgroup). This project has integrated field sedimentology, petrography and geochemistry to build new or revised depositional and diagenetic frameworks for each of these successions and has assessed palaeoredox conditions using carbon isotopes and rare earth element and yttrium (REY) patterns and anomalies. Despite a complex paragenetic history, including medium-grade contact metamorphism, the Tongwane Formation preserves primary (or near-primary), carbon isotope (delta13Ccarb = ~0 ± 2 ‰VPDB) and REY patterns that are consistent with Palaeoproterozoic seawater. No anomalously positive delta13Ccarb values or cerium (CeSN) anomalies are preserved, suggesting limited build-up of free O2. The lower Duitschland Formation preserves previously undocumented lithofacies variations and an angular mid-Duitschland unconformity (which is contemporaneous with the GOE). A new depositional model is proposed; facies assemblages and geometries are consistent with deposition of a wave-influenced Gilbert fan delta deposited in an isolated depocentre created by localised extensional fault subsidence. Lower Duitschland Formation limestones and dolomites show depleted delta13Ccarb and delta18Ocarb values and marine REY patterns which lack CeSN anomalies. Negative delta13Ccarb values suggest incorporation of 12C from organic matter during early diagenesis. There is no evidence of significant free oxygen production. The Koegas Subgroup is unconformably overlain by glacial strata of the Postmasburg Subgroup; the two successions are not intercalated and therefore not synchronous. Marine REY signals with positive Ce anomalies are recorded in delta13Ccarb depleted, stromatolitic dolomite exposed on the farms Taaibosfontein and Sandridge. Small magnitude positive anomalies are likely calculation artefacts, though anomalies >30 % may reflect redox stratification. Neoarchaean cuspate stromatolites of the Gamohaan Formation record trace element distributions - imaged using synchrotron-based XRF techniques - that map to primary microbial structures are not attributable to syndepositional or diagenetic mineralisation processes. Thus they may prove to be indicators of specific microorganisms and metabolic processes, e.g. photosynthetically relevant metals (e.g. Mn, Cu, Ni) mapped in biogenic structures may serve as a 'fingerprint' of cyanobacterial oxygenic photosynthesis. Overall, no evidence is seen for a secular rise in oxygen in the mid-Transvaal. However, depositional frameworks and diagenetic processes have been determined and the retention of marine signals established within the Tongwane, Duitschland and Koegas successions. Therefore the findings of this project constitute a robust framework for future palaeoredox studies of the mid-Transvaal Supergroup.
4

Petrography and geochemistry of iron formations of the Paleoproterozoic Koegas Subgroup, Transvaal Supergroup, Griqualand West, South Africa

Nel, Brian Philip 09 December 2013 (has links)
M.Sc. (Geology) / Nel, B.P. (2013). Petrography and geochemistry of iron formations of the Paleoproterozoic Koegas Subgroup, Transvaal Supergroup, Griqualand West, South Africa. MSc thesis (unpublished), University of Johannesburg, Aucklandpark, pp. 133. The Early Paleoproterozoic Koegas Subgroup comprises a succession of siltstone, mudstone, iron-­‐formation, chert and carbonate rocks that overlies the iron-­‐formations of the Asbestos Hills Subgroup with sharp contact. It is overlain with erosional unconformable contact by glaciogenic diamictites of the Makaganyene Formation. This study focused on the lithostratigraphy, mineralogy and geochemistry of the iron-­‐ formations of the Koegas Subgroup based on fresh diamond drill core samples obtained during the Agouron scientific drilling project in South Africa in 2004. The iron formations the Koegas Subgroup are represented by a few important lithotypes, occurring in distinct sedimentary facies, which formed in unique depositional and diagenetic environments. The iron formations consist essentially of four facies, namely silicate lutite, mixed silicate-­‐siderite lutite, siderite lutite and siderite peloidstone A repetitive sedimentary cycle consisting of fine-­‐grained chemical lithotypes grading upward into reworked chemical lithotypes is evident throughout the Koegas Subgroup iron formations. Silicate lutite formed in deep water settings well below the wave base along a chemocline. Siderite lutite formed in shallower parts of the basin through transformation of primary ferric iron precipitate by iron respiration in presence of organic carbon. Peloidstone formed above normal wave base in shallow water by reworking of earlier siderite lutite deposits. The REE geochemistry provides important clues as to the depositional environment of the iron formation as follows. Depletion in LREE and enrichment in HREE combined with positive Y are typical of ocean water indicate that the iron formations were deposited in a marine environment. Positive Eu anomaly suggest the presence of a hydrothermal component in the ocean water from which the iron formations were deposited. Negative Ce anomalies indicate that somewhere in the marine system Ce3+ was oxidized to Ce4+ oxide, probably in the presence of free oxygen in the ocean water column (Bau and Dulski, 1996). The negative Ce anomalies seen in the Koegas iron formations are the oldest currently known from iron formations. As such the Ce anomalies most probably signify an increase in the oxygenation state of the ocean immediately prior to the rise of atmospheric oxygen as defined by Guo et al. (2009).
5

Fracture Development Around Moshaneng and Kanye, Southeast Botswana

Modisi, Motsoptse Phillip 02 1900 (has links)
<p> SE Botswana, located in the NW part of the Kaapvaal Craton is a long lived tectonically stable environment dominated by brittle deformation for more than 2.6 Ga. </p> <p> Relative chronologies in the development of fractures are rationalized according to major unconformities that developed during the Proterozoic in areas around Moshaneng and Kanye in SE Botswana. Periods of brittle deformation are divided into pre-Transvaal Supergroup, post-Transvaal Supergroup/ pre-Waterberg Group and post-Waterberg Group times. Pre-Transvaal lineaments trend ENE and NE and were probably formed as fractures in a rifting environment Dikes are intruded along some of these lineaments. Post-Transvaal/ pre-Waterberg fractures consist of strike-slip faults that form a conjugate system of two major sets trending NE and NW. These fractures probably formed as a result of E-W compression. The displacement along the NE trending faults depicts reactivation along pre-existing fractures. Regional patterns of fault termination are discemable. Epidermal folds and thrusts were produced in the Transvaal Supergroup rocks. Rotational bulk strain is locally significant. PostWaterberg deformation was dominated by dip-slip faults, vertical displacements and drape folds. </p> <p> An orthogonal system of bedding-normal joints predominates in the layered rocks. Inversion of the relative magnitudes of a2 and a3 probably accounts for a two phase tensile failure of layered rocks during the formation of the joint system. A diagonal system of bedding normal joints is superimposed on the orthogonal system possibly because of pre-existing folds that perturb the remote stress field. Joint spacings have a negatively skewed normal frequency distribution. Systematic joints show that spacing of set1 <set2 <set3 <set4. </p> <p> Relics of joint patterns in chert breccia provide insight about post-Transvaal/ pre-Waterberg karstification residuum. The joint pattern accounts for the initial process of fragmentation that resulted in the formation of chert breccia. </p> <p> On the subcontinental scale, high strain tectonic belts provide a chronology of large scale stress fields that could explain the intracratonic brittle deformations. </p> / Thesis / Doctor of Philosophy (PhD)
6

Genesis of BIF-hosted hematite iron ore deposits in the central part of the Maremane anticline, Northern Cape Province, South Africa

Land, Jarred January 2014 (has links)
The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade BIF-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous work has failed to provide a robust and all-inclusive genetic model for such deposits in the Transvaal Supergroup; in particular, the role of hydrothermal processes in ore-genesis has not been adequately clarified. Recent studies by the author have produced evidence for hydrothermal alteration in shales (Olifantshoek Supergroup) stratigraphically overlying the iron-ore intervals; this has highlighted the need to reassess current ore-forming models which place residual supergene processes at the core of oregenesis. This thesis focuses on providing new insights into the processes responsible for the genesis of hematite iron ores in the Maremane anticline through the use of newly available exploration drill-core material from the centre of the anticline. The study involved standard mineralogical investigations using transmitted/reflected light microscopy as well as instrumental techniques (XRD, EPMA); and the employment of traditional whole-rock geochemical analysis on samples collected from two boreholes drilled in the centre of the Maremane anticline, Northern Cape Province. Rare earth element analysis (via ICP-MS) and oxygen isotope data from hematite separates complement the whole-rock data. Iron-ore mineralisation examined in this thesis is typified by the dominance of Fe-oxide (as hematite), which reaches whole-rock abundances of up to 98 wt. % Fe₂O₃. Textural and whole-rock geochemical variations in the ores likely reflect a variable protolith, from BIF to Fe-bearing shale. A standard supergene model invoking immobility and residual enrichment of iron is called into question on the basis of the relative degrees of enrichment recorded in the ores with respect to other, traditionally immobile elements during chemical weathering, such as Al₂O₃ and TiO₂. Furthermore, the apparently conservative behaviour of REE in the Fe ore (i.e. low-grade and high-grade iron ore) further emphasises the variable protolith theory. Hydrothermally-induced ferruginisation is suggested to post-date the deposition of the post-Transvaal Olifantshoek shales, and is likely to be linked to a sub-surface transgressive hydrothermal event which indiscriminately transforms both shale and BIF into Fe-ore. A revised, hydrothermal model for the formation of BIF-hosted high-grade hematite iron ore deposits in the central part of the Maremane anticline is proposed, and some ideas of the author for further follow-up research are presented.

Page generated in 0.0799 seconds