• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fracture Development Around Moshaneng and Kanye, Southeast Botswana

Modisi, Motsoptse Phillip 02 1900 (has links)
<p> SE Botswana, located in the NW part of the Kaapvaal Craton is a long lived tectonically stable environment dominated by brittle deformation for more than 2.6 Ga. </p> <p> Relative chronologies in the development of fractures are rationalized according to major unconformities that developed during the Proterozoic in areas around Moshaneng and Kanye in SE Botswana. Periods of brittle deformation are divided into pre-Transvaal Supergroup, post-Transvaal Supergroup/ pre-Waterberg Group and post-Waterberg Group times. Pre-Transvaal lineaments trend ENE and NE and were probably formed as fractures in a rifting environment Dikes are intruded along some of these lineaments. Post-Transvaal/ pre-Waterberg fractures consist of strike-slip faults that form a conjugate system of two major sets trending NE and NW. These fractures probably formed as a result of E-W compression. The displacement along the NE trending faults depicts reactivation along pre-existing fractures. Regional patterns of fault termination are discemable. Epidermal folds and thrusts were produced in the Transvaal Supergroup rocks. Rotational bulk strain is locally significant. PostWaterberg deformation was dominated by dip-slip faults, vertical displacements and drape folds. </p> <p> An orthogonal system of bedding-normal joints predominates in the layered rocks. Inversion of the relative magnitudes of a2 and a3 probably accounts for a two phase tensile failure of layered rocks during the formation of the joint system. A diagonal system of bedding normal joints is superimposed on the orthogonal system possibly because of pre-existing folds that perturb the remote stress field. Joint spacings have a negatively skewed normal frequency distribution. Systematic joints show that spacing of set1 <set2 <set3 <set4. </p> <p> Relics of joint patterns in chert breccia provide insight about post-Transvaal/ pre-Waterberg karstification residuum. The joint pattern accounts for the initial process of fragmentation that resulted in the formation of chert breccia. </p> <p> On the subcontinental scale, high strain tectonic belts provide a chronology of large scale stress fields that could explain the intracratonic brittle deformations. </p> / Thesis / Doctor of Philosophy (PhD)
2

The geology and geochemistry of the Glentig Swaershoek and Alma formations in the Limpopo Province, South Africa

Makulana, Mulalo Melton January 2020 (has links)
Thesis (M. Sc. (Geology)) -- University of Limpopo, 2020 / The Glentig, Alma and Swaershoek Formations were deposited after the emplacement of the Bushveld igneous complex (BIC). The sediments accumulated in what is termed as the proto-basin of the Waterberg Group. The Glentig Formation is an unconformity bounded formation that is overlain by the Swaershoek and Alma Formations of the Waterberg Group. This study revisited the stratigraphy and put perception on the petrography, lithofacies, provenance, paleoweathering, tectonic setting and source rock characteristics of the lower parts of Waterberg Group (Swaershoek and Alma Formations) and Glentig Formation. The methodologies employed in achieving the aforementioned goals include stratigraphical analysis, petrographical and modal composition analyses, lithofacies analysis and geochemical analysis. In the study area (northeast of Modimolle town), the Glentig Formation lies or bounded between the Swaershoek Formation and Schrikkloof Formation of the Rooiberg Group. The Glentig, Swaershoek and Alma Formations attained a maximum thickness of about 400 m, 300 m and 190 m, respectively. Based on the stratigraphical analysis, the Swaershoek, Alma and Glentig Formations can be correlated. The basis for the correlation rests solemnly on the similarities in the lithological characteristics that can be found in the three formations. Six facies were identified based on lithofacies analysis. The lithofacies are grouped into 2 facies association (FA1 and FA2). The two facies associations are FA1: Conglomerate and massive sandstone, and FA2: Cross-bedded sandstone, and planar cross-bedded sandstone. Sedimentological characteristics of the identified facies associations are interpreted as debris flow, and longitudinal and transverse bars (fluvial channel deposits). Petrography and modal composition analyses indicate that the detrital components of the sandstones are dominated by monocrystalline quartz, vi feldspar and lithic fragments. The sandstones of the Swaershoek, Alma and Glentig Formations can be classified as subarkosic arenite and lithic arkosic arenite. Also, provenance analysis indicates that the sandstones are derived from both felsic igneous provenance and intermediate igneous provenance. The modal composition analysis and geochemical tectonic setting discrimination diagrams show that the sediments are from both the passive and active continental margin tectonic settings. Also, the geochemical data of major and trace elements suggested that the studied formations have been derived from the same provenance source area. The indices of weathering indicated that the studied rocks have been subjected to moderate to the high degree of chemical weathering. / Mining Qualification Authority (MQA)

Page generated in 0.0634 seconds