• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stratigraphic characterisation of the Collingham formation in the context of shale gas from a borehole (SFT 2) near Jansenville, Eastern Cape, South Africa

Black, Dawn Ebony January 2015 (has links)
This study is an extensive lithological, petrographical, mineralogical and geochemical description of fresh Collingham Formation core samples collected from borehole SFT 2, located on the farm Slangfontein, south of Jansenville in the Eastern Cape, South Africa. The borehole, drilled to 295 m on the northerly limb of a shallow westerly plunging syncline, intersected the lower Ecca Group rocks of the Ripon, Collingham, Whitehill and Prince Albert Formations and terminated in the upper Dwyka Group. A comprehensive log and stratigraphic column were compiled for the Collingham Formation and fresh core samples were analysed using X-Ray Diffraction (“XRD”), X-Ray Fluorescence (“XRF”), mercury porosimetry, and Total Organic Carbon (“TOC”). Thin section microscopy and Scanning Electron Microscopy (“SEM”) analyses were carried out on selected samples of core from borehole SFT 2. The matrix supported, massive to laminated lithological units of the Collingham Formation are interpreted as detrital, terrigenous sediments. These sediments are composed of intercalated fine-grained, poorly sorted, non-fissile mudstone; fine- to very fine-grained, predominantly pyroclastic airfall tephra; and less common fine-grained sandstones. Sediments of the Collingham Formation are considered to be immature, composed primarily of clay and aluminosilicates. The predominance of a clay fraction and aluminosilicates in mudstone samples is indicated by elevated K2O/Al2O3 ratio values, and the relationship of Zr, Al2O3 and TiO2. The presence of glauconite within the Collingham Formation indicates deposition in a mildly alkaline, slightly reducing marine environment. Rb/K ratio values (1.9 – 2.3 x 10-3) indicate brackish to slightly marine conditions, while low Zr/Rb ratio values indicate a low hydro-energy environment, with stable bottom water conditions. Hf and Nb concentrations indicate that detrital input was greatest during the deposition of tuffaceous units; while stable mineral assemblages and a low Fe2O3/K2O ratio values indicate deposition close to the source. A variation in Si/Ca values indicate times when sediments were affected by turbidity, interspersed with times of relative quiescence. The predominance of K2O over Na2O indicates that the Collingham Formation is alkali-rich, while SiO2/Al2O3 ratio values and the relationship of Zr, Al2O3 and TiO2 indicate that sediments are immature. In the lower portion of the formation, non-sulphidic, anoxic conditions are indicated by Mn/Al, V/(V+Ni), V/Cr ratio values, the Fe-Mn- V content, and the correlation between V and TOC. The upper portion of the formation is considered dysoxic, due to the presence and distribution of pyrite framboids, which indicate a fluctuating O2 level, likely indicating deposition at the interface between anoxic and slightly more oxic conditions. V/Cr ratio values indicate that the O2 regime was lowest during the deposition of the mudstones. The Chemical Index of Alteration (“CIA”) indicates a consistent weathering regime throughout the deposition of the Collingham Formation, associated with a temperate climate on the interface between glacial and tropical conditions. Although an anoxic and low hydro-energy environment is generally favourable for hydrocarbon accumulation, the Collingham Formation contains low levels of Total Organic Carbon (well below 0.9 per cent) and low porosities (ranging from 0.35 per cent to a maximum of 2.22 per cent), both of which are characteristic of a poor source for gas accumulation. Due to the laminate nature, permeability and fracturability of the Collingham Formation, there is the potential that the formation may form a good sealing sequence to the potentially gas-rich Whitehill Formation below. The metamorphic impact related to the Cape Orogeny (± 250 Ma), and reflected in the textures of the minerals making up the sediments of the Collingham Formation, suggests the enhancement in the sealing efficiency of this formation.
2

A preliminary investigation and photographic atlas of nodules found in the Bokkelveld group (Gydo formation), Steytlerville district, South Africa

Browning, Claire January 2009 (has links)
Nodules within the lower Bokkeveld shales often contain well-preserved invertebrate fossil material. The aim of this study was to describe some characteristics seen at various scales (macro-, micro- and ultra -) within nodules that might contribute to an understanding of aspects of nodule formation and the reasons for the excellent preservation of the fossil material within these nodules. Detailed, high quality macro-photographs were taken of sliced and whole nodule surfaces and a catalogue was produced to tentatively identify fossils present and illustrate the variations seen within nodules. Selected nodules were then subjected to petrographic, ultra-structural (SEM) and some chemical (EDS, XRD & XRF) analysis to investigate the possible reasons for these variations. The chemical results have indicated that nodules are enriched with quartz compared to the surrounding shale. Quartz is also the dominant mineral replacing trilobite carapace material within nodules, while trilobite material within shales is replaced with equal proportions of hematite, biotite and quartz. It appears that the higher resistance of quartz to weathering is the dominant factor leading to the preservation of both nodules within the shales and trilobite material within the nodules examined. A comparison with some Western Cape nodules highlighted possible variations in overall nodule chemical composition along strike. Western Cape nodules are predominantly composed of apatite whereas the Cockscomb nodules are mainly composed of quartz. This quartz-apatite compositional variation in nodules occurring within a single formation has been reported from nodules found in the Armorican Massif of France which are very similar in a number of respects to the Bokkeveld nodules described in this study. Based on various features of the fossils present and the structure of nodules they were probably formed during early diagenesis within an epeiric marine deposit greatly affected by sea level fluctuations.
3

Lithostratigraphy sedimentology and provenance of the Balfour Formation Beaufort Group in the Fort Beaufort Alice area Eastern Cape Province South Africa

Katemaunzanga, David January 2009 (has links)
A traverse through the Balfour Formation was chosen in the area around the towns of Fort Beaufort and Alice in the Eastern Cape Province. The main objectives of the study were to map the lithological variations within the Balfour Formation and to distinguish it from the underlying Middleton Formation and the overlying Katberg Formation. A combined desktop, field and laboratory approach was used in this study. Aerial photographs, satellite images and digital topographical maps formed the basis of the desktop work. After desktop mapping, a number of field traverses were measured through the study area. Sedimentary structures were observed, photomosaics were done, stratigraphic sections were measured and samples were collected for thin sectioning, heavy mineral separation and major, trace and REE analysis. Sedimentological development of the Balfour Formation has been outlined in relation to its provenance during the Late Permian. Lithological variation of the Balfour Formation is characterised by alternating sandstone-dominated and mudstone-dominated members. Arenaceous Oudeberg and Barberskrans Members are contain facies ranging from intraformational conglomerates (Gmm), massive sandstones (Sm & Ss), horizontally laminated sandstones (Sh), planar and trough cross-bedded sandstones (Sp, Sl & St), trough cross-laminated sandstones (Sr) and fine-grained sediments (Fm & Fl), whereas the mudstone dominated members are characterised by the facies Fm and Fl. Lithofacies together with bedforms observed in the Balfour Formation were used in architecturalelement analysis. Sandstone–rich members are dominated by channel fill elements such as LS, DA, SB, LA and CH, whereas the fine-grained component consists of mainly, FF iii element. The mudstone-dominated members contain FF, CS and LV elements, with LA, SB and CH in the subordinate sandstones. Petrography, geochemistry and palaeocurrent analysis indicated that the source of the Balfour Formation was to the south-east and the rocks had a transitional/dissected magmatic arc signature. This led to the postulation of the Karoo Basin to have developed in a retro-arc foreland basin where there was supralithospheric loading in the Cape Fold Belt due to a compressional regime initiated by the subduction of Palaeo-Pacific plate underneath the Gondwana plate. The tectonic loading was episodic with eight major paroxysms affecting the Karoo Supergroup. The Balfour Formation coincides with the fourth paroxysm, this paroxysm in turn consists of two third-order paroxysm that initiated the deposition of the Oudeberg and Barberskrans Members in low sinuosity streams. Each paroxysm was followed by a period of quiescence and these resulted in the deposition of the Daggaboersnek, Elandsberg and Palingkloof Members in meandering streams. Depositional environments were determined mainly from the sedimentary structures and 3D architecture of the rock types. Sandstone rich members were formed by seasonal and ephemeral high energy low sinuous streams whereas the fine-grained rich members were formed by ephemeral meandering streams. Palaeoclimates have been equated to the present temperate climates; they were semi-arid becoming arid towards the top of the Balfour Formation. This has been determined geochemistry (CIA), sedimentary structures and other rock properties like colour.
4

The geology and geochemistry of the Glentig Swaershoek and Alma formations in the Limpopo Province, South Africa

Makulana, Mulalo Melton January 2020 (has links)
Thesis (M. Sc. (Geology)) -- University of Limpopo, 2020 / The Glentig, Alma and Swaershoek Formations were deposited after the emplacement of the Bushveld igneous complex (BIC). The sediments accumulated in what is termed as the proto-basin of the Waterberg Group. The Glentig Formation is an unconformity bounded formation that is overlain by the Swaershoek and Alma Formations of the Waterberg Group. This study revisited the stratigraphy and put perception on the petrography, lithofacies, provenance, paleoweathering, tectonic setting and source rock characteristics of the lower parts of Waterberg Group (Swaershoek and Alma Formations) and Glentig Formation. The methodologies employed in achieving the aforementioned goals include stratigraphical analysis, petrographical and modal composition analyses, lithofacies analysis and geochemical analysis. In the study area (northeast of Modimolle town), the Glentig Formation lies or bounded between the Swaershoek Formation and Schrikkloof Formation of the Rooiberg Group. The Glentig, Swaershoek and Alma Formations attained a maximum thickness of about 400 m, 300 m and 190 m, respectively. Based on the stratigraphical analysis, the Swaershoek, Alma and Glentig Formations can be correlated. The basis for the correlation rests solemnly on the similarities in the lithological characteristics that can be found in the three formations. Six facies were identified based on lithofacies analysis. The lithofacies are grouped into 2 facies association (FA1 and FA2). The two facies associations are FA1: Conglomerate and massive sandstone, and FA2: Cross-bedded sandstone, and planar cross-bedded sandstone. Sedimentological characteristics of the identified facies associations are interpreted as debris flow, and longitudinal and transverse bars (fluvial channel deposits). Petrography and modal composition analyses indicate that the detrital components of the sandstones are dominated by monocrystalline quartz, vi feldspar and lithic fragments. The sandstones of the Swaershoek, Alma and Glentig Formations can be classified as subarkosic arenite and lithic arkosic arenite. Also, provenance analysis indicates that the sandstones are derived from both felsic igneous provenance and intermediate igneous provenance. The modal composition analysis and geochemical tectonic setting discrimination diagrams show that the sediments are from both the passive and active continental margin tectonic settings. Also, the geochemical data of major and trace elements suggested that the studied formations have been derived from the same provenance source area. The indices of weathering indicated that the studied rocks have been subjected to moderate to the high degree of chemical weathering. / Mining Qualification Authority (MQA)
5

Stratigraphic evolution and characteristics of lobes : a high-resolution study of Fan 3, Tanqua Karoo, South Africa

Neethling, J. M. 03 1900 (has links)
Thesis (MSc (Earth Sciences))--University of Stellenbosch, 2009. / Fan 3 is one of four basin-floor fans that form part of the Tanqua Karoo Fan Complex in South Africa. It can be subdivided into several sandstone lobes, based on the presence of thin-bedded siltstone intervals above and below major sandstone packages. Six lobes are identified in the mid fan section, as well as two older groups of thin, low-volume turbidite deposits at the base. Some of the lobes are further divided into an upper and lower lobe-element based on depositional behaviour. The volumetrically and spatially larger lobes have a finger-like appearance in plan view, which is attributed to multiple lobe-scale axial zones. This is especially visible towards the eastern margins of Lobes 2, 4 and 5. The stratigraphy and facies distribution are presented on several 2D panels. Computer generated isopach maps are presented for each lobe, lobe-element and interlobe unit. Autogenic control on the depositional pattern of the Fan 3 lobe complex was inferred from the palaeoflow patterns of the composing lobes and lobe-elements. The majority of the lobes show a north-eastern palaeoflow direction in the south, with a gradual westward shift in the north. Inferred controls are basin-floor topography, the presence of pre-existing lobes, and characteristics of the depositional flow, such strength, density, sediment load, palaeoflow direction.
6

Heavy mineral characterization and provenance interpretation of the Ecca Group of geological formations in Eastern Cape Province, South Africa

Sinuka, Sikhulule January 2016 (has links)
The aim of the research focuses on characterizing heavy mineral assemblages and interpretation of the provenance of the Ecca Group of in the Eastern Cape Province, South Africa. In South Africa, the Ecca Group outcrops extensively in the Main Karoo Basin. Mudstone, siltstone, sandstone, minor conglomerate and coal are the major constituent lithologies within the group. For descriptive purposes, the Ecca is categorized into three different geographical areas: the southern area, the western and northwestern area and the northeastern area. Six of the sixteen geological formations, namely the Prince Albert, Whitehill, Collingham, Ripon, Fort Brown, Waterford and Koonap Formations are present in the study area and are best exposed in road cuttings. For purposes of comparison, the underlying Witteberg Group, the Dwyka (which has Formation status here), and the overlying Koonap Formation of the Beaufort Group, are included in the study. This study is motivated by the relatively little information that is available on the heavy minerals of the Ecca Group, and that research of this nature had not been undertaken in the study area before. Another contributing motivation was to determine whether heavy mineral assemblages could be used to identify formations of the Ecca Group and for correlating between different localities in accordance with studies done elsewhere. Additionally, diagnostic heavy mineral assemblages could aid with stratigraphic selection of future boreholes in the Ecca Group. Heavy minerals are natural provenance tracers because of their stable nature and hydrodynamic behaviour. They are both non-opaque and opaque, with apatite, epidote, garnet, rutile, staurolite, tourmaline and zircon being good examples of non-opaque grains while ilmenite and magnetite are the most common opaques. Heavies are either derived from stable minor accessory minerals or from abundant but unstable mafic components of the host rock. They are very useful in interpreting the provenance due to the fact that some minerals are diagnostic of certain source rocks. However, sediments are exposed to several factors (conditions) such as weathering, erosion, breakage due to abrasion, mixing and recycling during transportation from the source to the depositional area. This implies that there are parameters other than the parent lithology that determine their final composition.
7

Post-mining ground instability due to natural re-watering of dolomitic aquifer in the Merefong area

Phogole, Kedibone Solomon 17 September 2014 (has links)
M.Tech. (Extraction Metallurgy) / The discovery of gold at Langlaagte in 1886 led to the development of gold mining in the Far West Rand in 1934. When shafts were sunk, water from the dolomites posed a serious threat to mining. Despite cementation that sealed the many fissures, water still found its way into the underground workings. This led to the “uniform” policy of dewatering. The farming communities in the area that were dependent on the ground water had to be considered, as they had lost their livelihood. As the water levels lowered, dolines and sinkholes were formed, posing a serious threat to life and property. When the mines eventually cease to operate, be it due to high working costs, or the declining grade of the ore body, the re-watering of the dolomitic compartments will occur as a natural consequence. When water comes to within six metres of the original water level, ground instability, the formation of dolines and sinkholes, both new and existing, will occur, threatening the important rail link between Pretoria and Cape Town as it passes through Far West Rand, as well as the N12 between Johannesburg and Potchefstroom, as well as the N14 which lies to the east connecting the Gauteng Province and the North West Province. The dewatering of the compartments caused the soil which formed the roof of the cavities to dry. Re-watering will cause this dry, stable material to become wet and unstable. Where mixtures of slime and/or other material, which is not part of the geological composition of that area was used, the same phenomenon will apply. A further complication is caused by the slimes dams which are unlined. In fact, some of the slime dams were deliberately constructed over cavernous dolomite. This large mass of mine tailings over the dolomitic aquifers will “liquefy”. If the re-watering is not carefully managed the rising water table will undoubtedly trigger a rash of new sinkholes, with catastrophic consequences for unsuspecting communities that may have been established in sensitive areas. The results of previous investigations by the Departments Minerals, Energy and Water Affairs who, due to the loss of institutional memory, might not be able to find the relevant information. Other organizations such as the Council for Geoscience could be using the results for consultancy. The information should be digitized and be available to the broader South African public. FWRDWA is currently in charge of monitoring events in the area. Levelling observations have been carried out quarterly and, so far the movement of ground is minimal. The potential hazard of ground instability will recur with the re-watering of the dolomitic compartments of the Far West Rand. To support what could happen, reference is made to events which took place in the late seventies when the Far West Rand had an above average rainfall. The Donaldson Dam overflowed into the Wonderfontein Spruit and into the dewatered Venterspost compartment. As a result, the water level of the Venterspost Compartment rose rapidly which led to the re-activation of sinkholes and the formation of new ones in the Venterspost area. In the present work levelling has been carried out along most of the loops affected and the results of the levelling give an impression that the surface is currently relatively stable. This Dissertation is presented as an attempt to alert the authorities to the potential dangers if the post mining period is not carefully monitored and insufficient provision made to deal with potential contingencies.
8

Petrogenesis of the upper critical zone in the Western Bushveld Complex with emphasis on the UG1 Footwall and Bastard units

De Klerk, William Johan January 1992 (has links)
This study is an account of the stratigraphic sequence, the petrography, mineralogy (microprobe investigations of orthopyroxene, clinopyroxene, olivine and plagioclase feldspar), and whole-rock major- and traceelement geochemistry of the silicate cumulates of the Upper Critical Zone in the western Bushveld Complex. Two parts of the study - an investigation of a 350m column incorporating the MG3 and UGI Footwall Units, and a comparison of two additional Upper Critical Zone profiles with a previously compiled profile between the UGI and Bastard Units - are focused on RPM Union Section in the northwestern sector of the Complex. The third part is a detailed vertical and lateral investigation of the Bastard Unit at the top of the Critical Zone, which draws on sampling and data compilation from seventeen profiles in the western limb of the Complex. The MG3 Unit (45m) is made up of a lower chromitite layer overlain by a norite-pyroxenite-anorthosite sequence while the UGlFW Unit (295m) is composed of a related series of lower chromitite layers (MG4) overlain by a pyroxenite-norite-anorthosite sequence capped by the UGI chromitite layer. These mafic cumulates display a distinctive pattern of oscillating cryptic variation in whole-rock Mg/(Mg+Fe), FeO/Ti0₂, Cr/Co and Ni/V ratios through the sequence. Sympathetic oscillations are recorded for compositions of orthopyroxene and plagioclase feldspar and eight subcycles are recognised through the UGlFW Unit. The entire sequence is characterised by the presence of small, spheroidal, embayed and irregularly shaped plagioclase grains which are poikilitically enclosed in cumulus orthopyroxene grains of both pyroxenites and norites. This texture is indicative of partial resorption of pre-existing feldspar primocrysts within the melt prior to their being incorporated into the host orthopyroxene grains. Textural, geochemical and isotopic data suggest that this sequence was built up by periodic additions of fresh, relatively primitive liquid into fractionated resident liquid, and subsequent mixing within the magma chamber. The Bastard Unit sequence, described in Chapter 4, is the last and most complete cyclic unit (c. 60m) of the Critical Zone, and its upper contact defines the boundary between the Critical and Main Zones of the Complex. This Unit can conveniently be sub-divided into a lower part, where orthopyroxene occurs as a cumulus phase, and the upper part which is composed entirely of anorthosite (Giant Mottled Anorthosite). The basal part of the Unit (≤ 18m) comprises a thin chromitite layer < O.5cm) overlain by a pyroxenite-melanorite-norite-leuconorite sequence. The basal pyroxenite is orthocumulate in character and rapidly gives way to norites and leuconorites. A distinct threefold subdivision emerges within the Giant Mottled Anorthosite which is predominantly an adcumulate which becomes orthocumulate in character at its top. Apart from minor deviations in thicknesses these lithologies are recorded over the entire strike-length covered in this study. Profiles of cryptic variation are compiled for orthopyroxene, plagioclase and whole-rock data and show that the Bastard Unit displays a characteristic pattern which is maintained throughout the western Bushveld Complex. A minor yet distinctive reversal in cryptic variation is revealed at a level which is stratigraphically variable within the lower Giant Mottled Anorthosite, and results in a double cuspate pattern. A remarkable feature of the basal Bastard pyroxenites is that although the modal proportion of mafic to felsic constituents varies systematically away from the northwestern sector, the Mg/(Mg+Fe) ratio of orthopyroxenes remains constant at 0.804 over a lateral strike distance of 171km. Within the upper part of the Unit the orthopyroxene is markedly Fe-rich and it is here that inverted primary pigeonite appears for the first time as a cumulus phase. In addition, K-feldspar, oscillatory zoned plagioclase grains and high levels of incompatible trace elements are noted at this level. On the basis of the data presented it is concluded that the Bastard Unit represents the crystallisation of a final, relatively large influx of hotter primitive liquid, with upper Critical Zone affinities, and subsequent mixing with a column of cooler (less dense) supernatant liquid which had in part hybridized with the overlying Main Zone magma. It is hypothesised that this new liquid was emplaced as a basal flow beneath supernatant liquid and that it initiated the deposition of mafic cumulates at its base. The supernatant liquid is interpreted as representing the fractionated residuum produced by crystallisation of earlier cyclic units, with plagioclase on the liquidus, and that it contained an abundance of small plagioclase primocrysts in suspension. Development of the Unit can be viewed as a two-stage process. In the lower half of the unit, chemical and physical parameters typical of the new magma dominated the crystallisation process, and resulted in cumulates very similar to other relatively complete Upper Critical Zone units. In the upper, leucocratic sequence, above a minor reversal, crystallisation was from a liquid which was the product of mixing of a minor pulse of primitive liquid with the reservoir of hybridized supernatant liquid. Although the Bastard Unit is not continuous around the entire Western limb of the Complex, it is concluded that it developed in a single, or connected, magma chamber and that its irruptive feeder zone was located in the proximal northwestern facies of the Complex.
9

A geochemical and field study of the Ingeli and Horseshoe lobes, Mount Ayliff Complex, South Africa, and its potential for magmatic suphide ores

Albrechtsen, Bart Hunter 12 August 2005 (has links)
The Mount Ayliff Complex (MAC) is situated on the border between Kwa-Zulu Natal and the Eastern Cape provinces in the Republic of South Africa, approximately 90 km due west of Port Shepstone. The Complex forms part of the Karoo Igneous Province and includes five lobes (Ingeli, Insizwa, Tonti, Tabankulu, and Horseshoe) that are the remnants of a single continuous intrusive sheet that had an original extent of 18,000km2• The current outcrop is estimated at 800km2• The lobes all show extensive internal differentiation, from basal ultramafic cumulates to diorites and monzonites at the top, while most other intrusions in the Karoo Igneous Province cooled rapidly enough to produce relatively homogenous dolerites. Most work conducted on the Complex thus far has centered on the Insizwa lobe due to the presence of a Ni-sulphide occurrence near the base of the lobe at Waterfall Gorge. The setting of the ores has analogies to the Noril'sk-Talnakh deposits, which has raised considerable exploration interest on the Mount Ayliff Complex over the last century. The current study investigates the Ni-Cu sulphide potential of the Ingeli and Horseshoe lobes, which have been poorly studied in the past. To this effect, a stream sediment survey was conducted around the Ingeli lobe to try and detect potentially hidden magmatic sulphide ores. Further, the five lobes of the Complex have been compared in terms of lithology and lithogeochemistry. Analytical techniques used for the current study include: XRF, ICP-MS and electron microprobe. Stream sediment samples were analysed using XRF and ICP-OES. Olivines from the ultramafic cumulates of the Ingeli and Insizwa lobes are undepleted in Ni, whereas olivines from the Horseshoe and Tabankulu lobes are strongly depleted in Ni. This suggests that the rocks of the latter two lobes crystallized from parental magmas that interacted with a sulphide liquid and that the magmatic flow direction was from the north to the south. The data indicate that the ultramafic rocks of the Complex plot on or near control lines between olivine and Karoo dolerite indicating that the rocks are mixtures of cumulus olivine and trapped melt of Karoo dolerite composition. There appears to be a copper enrichment towards the top of the ultramafic package in the Ingeli lobe. This pattern corresponds to other studies conducted in the InsiZWa lobe and suggests that the two lobes had originally been connected. The lowermost cumulates of the Ingeli lobe contain an enhanced crustal component suggesting some in situ contamination. No significant sulphide enrichments were encountered in the Basal Zone rocks of the Ingeli lobe. However, the stream sediment data indicate localized PGE enrichment indicating the possible presence of a localized hidden sulphide occurrence of the type found at Waterfall Gorge. Small amounts of sulphides were found associated with the Basal Zone rocks in the Horseshoe lobe consistent with the trends of Ni-depletion of olivines. However, a lack of Co depletion in the ultramafic rocks of this lobe suggests that any sulphide segregation event that did take place was of a relatively small scale. / Dissertation (MSc)--University of Pretoria, 2006. / Geology / MSc / Unrestricted
10

The geology and geochemistry of the Glentig, Swaershoek and Alma Formations in the Limpopo Province, South Africa

Makulana Mulalo Melton January 2021 (has links)
Thesis (M. Sc. (Geology)) -- University of Limpopo, 2021 / The Glentig, Alma and Swaershoek Formations were deposited after the emplacement of the Bushveld igneous complex (BIC). The sediments accumulated in what is termed as the proto-basin of the Waterberg Group. The Glentig Formation is an unconformity-bounded formation that is overlain by the Swaershoek and Alma Formations of the Waterberg Group. This study revisited the stratigraphy and put perception on the petrography, lithofacies, provenance, paleoweathering, tectonic setting and source rock characteristics of the lower parts of Waterberg Group (Swaershoek and Alma Formations) and Glentig Formation. The methodologies employed in achieving the aforementioned goals include stratigraphical analysis, petrographical and modal composition analyses, lithofacies analysis and geochemical analysis. In the study area (northeast of Modimolle town), the Glentig Formation lies or bounded between the Swaershoek Formation and Schrikkloof Formation of the Rooiberg Group. The Glentig, Swaershoek and Alma Formations attained a maximum thickness of about 400 m, 300 m and 190 m, respectively. Based on the stratigraphical analysis, the Swaershoek, Alma and Glentig Formations can be correlated. The basis for the correlation rests solemnly on the similarities in the lithological characteristics that can be found in the three formations. Six facies were identified based on lithofacies analysis. The lithofacies are grouped into 2 facies association (FA1 and FA2). The two facies associations are FA1: Conglomerate and massive sandstone, and FA2: Cross-bedded sandstone, and planar cross-bedded sandstone. Sedimentological characteristics of the identified facies associations are interpreted as debris flow, and longitudinal and transverse bars (fluvial channel deposits). Petrography and modal composition analyses indicate that the detrital components of the sandstones are dominated by monocrystalline quartz, feldspar and lithic fragments. The sandstones of the Swaershoek, Alma and Glentig Formations can be classified as subarkosic arenite and lithic arkosic arenite. Also, provenance analysis indicates that the sandstones are derived from both felsic igneous provenance and intermediate igneous provenance. The modal composition analysis and geochemical tectonic setting discrimination diagrams show that the sediments are from both the passive and active continental margin tectonic settings. Also, the geochemical data of major and trace elements suggested that the studied formations have been derived from the same provenance source area. The indices of weathering indicated that the studied rocks have been subjected to moderate to the high degree of chemical weathering. Keywords: Geology, geochemistry, Glentig, Swaershoek, Alma, Waterberg Group, South Africa / Mining Qualification Authority (MQA)

Page generated in 0.1178 seconds