• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FPGA Implementation of an Adaptive LMS decorrelating transversal filter for CDMA System

Chen, Kuan-Nan 02 September 2009 (has links)
In this thesis, we investigate the CDMA (Code Division Multiple Access) multi- user detection scheme where the DD (Decorrelating Detector) is used to eliminate the multiple access interference. The DD algorithm need to compute the inverse of the matrix involves a great deal of computation, especially when the number of users is large. A recursive method with the LMS (Least-Mean-Square) algorithm, namely the decorrelating transversal filter, to detect users¡¦ signals adaptively can reduce greatly the computational complexity of a CDMA multi-user detector. In this thesis, we focus on the hardware FPGA (Fdield Programmable Gate Array) implementation of the decorrelating transversal filter. The functional system simulation of the decorrelating transversal filter is carried out by using Matlab first. Then this filter is implemented by the Xilinx FPGA and its system performance is also verified.
2

Distributed Circuit Techniques for Equalization of Short Multimode Fiber Links

Ng, George Chung Fai 30 July 2008 (has links)
Electronic dispersion compensation (EDC) of intermodal dispersion on short multimode fiber (MMF) links operating at 40 Gb/s is investigated through system level simulations and the design of two analog integrated circuit (IC) equalizers. System simulations using worst-case MMF link models show the effectiveness of a 2-tap baud spaced finite impulse response (FIR) equalizer for 40-m links, and a second-order Tbaud/2 infinite impulse response (IIR) equalizer for 50-m links. An IIR filter topology suitable for IC implementation with double loops and multiple delay sections was developed. The 2-tap FIR and the IIR equalizer are implemented in UMC 0.13-um and STM 90-nm CMOS processes respectively. Measurements demonstrate the FIR and IIR equalizing 38-Gb/s and 30-Gb/s cable channels respectively. To the author's knowledge, the double-loop multi-delay IIR equalizer is the first integrated traveling-wave equalizer utilizing poles as a means of frequency boosting, contrasting the conventional FIR technique of utilizing zeros.
3

Distributed Circuit Techniques for Equalization of Short Multimode Fiber Links

Ng, George Chung Fai 30 July 2008 (has links)
Electronic dispersion compensation (EDC) of intermodal dispersion on short multimode fiber (MMF) links operating at 40 Gb/s is investigated through system level simulations and the design of two analog integrated circuit (IC) equalizers. System simulations using worst-case MMF link models show the effectiveness of a 2-tap baud spaced finite impulse response (FIR) equalizer for 40-m links, and a second-order Tbaud/2 infinite impulse response (IIR) equalizer for 50-m links. An IIR filter topology suitable for IC implementation with double loops and multiple delay sections was developed. The 2-tap FIR and the IIR equalizer are implemented in UMC 0.13-um and STM 90-nm CMOS processes respectively. Measurements demonstrate the FIR and IIR equalizing 38-Gb/s and 30-Gb/s cable channels respectively. To the author's knowledge, the double-loop multi-delay IIR equalizer is the first integrated traveling-wave equalizer utilizing poles as a means of frequency boosting, contrasting the conventional FIR technique of utilizing zeros.
4

Ultra-wideband Narrowband Interference Cancellation and Channel Modeling for Communications

Donlan, Brian Michael 07 March 2005 (has links)
Interest in Ultra-wideband (UWB) has surged since the FCC's approval of a First Report and Order in February 2002 which provides spectrum for the use of UWB in various application areas. Because of the extremely large bandwidth UWB is currently being touted as a solution for high data rate, short-range wireless networks. An integral part of designing systems for this application or any application is an understanding of the statistical nature of the wireless UWB channel. This thesis presents statistical characterizations for the large and small scale indoor channel. Specifically, for large scale modeling channel frequency dependence is investigated in order to justify the application of traditional narrowband path loss models to UWB signals. Average delay statistics and their distributions are also presented for small scale channel modeling. The thesis also investigates narrowband interference cancellation. To protect legacy narrowband systems the FCC requires any UWB transmission to maintain a very low power spectral density. However, a UWB system may therefore be hampered by the presence of a higher power narrowband signal. Narrowband interferers have a much greater power spectral density than UWB signals and can negatively affect signal acquisition, demodulation, and ultimately lead to poor bit error performance. It is therefore desirable to mitigate any in-band narrowband interference. If the interferer's frequency is known then it may simply be removed using a notched filter. It is however of more interest to develop an adaptive solution capable of canceling interference at any frequency across the band. Solutions which are applied in the analog front end are preferable to digital backend solutions since the latter require extremely high rate sampling. The thesis therefore discusses two analog front-end interference cancellation techniques. The first technique digitally estimates the narrowband interference (this is possible because the UWB signal is not being sampled) and produces an RF estimate to perform the narrowband cancellation in the analog domain. Two estimation techniques, an LMS algorithm and a transversal filter, are compared according to their error performances. The second solution performs real-time Fourier analysis using transform domain processing. The signal is converted to the frequency domain using chirp Fourier transforms and filtered according to the UWB spectrum. This technique is also characterized in terms of bit error rate performance. Further discussion is provided on chirp filter bandwidths, center frequencies, and the applicability of the technology to UWB. / Master of Science

Page generated in 0.0652 seconds