• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic Retrofit of Concrete Columns by Transverse Prestressing

Sabri, Amirreza 09 September 2013 (has links)
Performance of buildings and bridges during past earthquakes has indicated that many of these structures are vulnerable to seismic damage and structural collapse. The deficiencies in pre-1970s design codes have resulted in poor performance of reinforced concrete structures during seismic excitations. The Richter Magnitude 6.6 - 1971 San Fernando Earthquake raised awareness for seismic retrofit needs of existing buildings for the first time. The majority of deficiencies of vulnerable concrete columns can be overcome through seismic retrofits that involve additional transverse reinforcement. This can be done either by providing reinforced concrete, steel, or fibre-reinforced polymer (FRP) jackets around existing columns; or by applying transverse prestressing to columns (RetroBelt System). The research project presented in this thesis involves a seismic retrofit methodology for seismically deficient building and bridge columns, utilizing the use of high-strength packaging straps as external reinforcement for transverse prestressing. The emphasis in the project is placed on experimental research. Three seismically deficient full-size reinforced concrete columns, with a circular, a square and a rectangular cross- section, either critical in shear or flexure, were designed, built and tested under simulated seismic loading. The results indicate that external prestressing of columns in transverse direction with high-strength steel straps improves ductility and energy dissipation capacity of seismically deficient columns. They further indicate that current analytical techniques can be used to predict the force-displacement relationships of columns. A design approach is presented for the retrofit methodology investigated.
2

Seismic Retrofit of Concrete Columns by Transverse Prestressing

Sabri, Amirreza January 2013 (has links)
Performance of buildings and bridges during past earthquakes has indicated that many of these structures are vulnerable to seismic damage and structural collapse. The deficiencies in pre-1970s design codes have resulted in poor performance of reinforced concrete structures during seismic excitations. The Richter Magnitude 6.6 - 1971 San Fernando Earthquake raised awareness for seismic retrofit needs of existing buildings for the first time. The majority of deficiencies of vulnerable concrete columns can be overcome through seismic retrofits that involve additional transverse reinforcement. This can be done either by providing reinforced concrete, steel, or fibre-reinforced polymer (FRP) jackets around existing columns; or by applying transverse prestressing to columns (RetroBelt System). The research project presented in this thesis involves a seismic retrofit methodology for seismically deficient building and bridge columns, utilizing the use of high-strength packaging straps as external reinforcement for transverse prestressing. The emphasis in the project is placed on experimental research. Three seismically deficient full-size reinforced concrete columns, with a circular, a square and a rectangular cross- section, either critical in shear or flexure, were designed, built and tested under simulated seismic loading. The results indicate that external prestressing of columns in transverse direction with high-strength steel straps improves ductility and energy dissipation capacity of seismically deficient columns. They further indicate that current analytical techniques can be used to predict the force-displacement relationships of columns. A design approach is presented for the retrofit methodology investigated.

Page generated in 0.1495 seconds