• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive bandwidth allocation control for virtual paths in broadband networks

Saiklao, Wichit 12 1900 (has links)
No description available.
2

Improvement of direct electron transfer-type bioelectrocatalytic property of D-fructose dehydrogenase by protein engineering approach / フルクトース脱水素酵素による直接電子移動型バイオエレクトロカタリシスのタンパク質工学的手法による特性改良

Hibino, Yuya 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第21836号 / 農博第2349号 / 新制||農||1068(附属図書館) / 学位論文||H31||N5208(農学部図書室) / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 加納 健司, 教授 三芳 秀人, 教授 三上 文三 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
3

Knowledge Transfer between Swedish firms andtheir Indian sales units: : Enablers, impediments, and the importance oforganizational culture

Lövnord, Marcus, Hölcke, Magnus January 2011 (has links)
The purpose of this study is to explore knowledge transfer between Swedish firms and their Indian sales units. We maintain that knowledge is a strategic contributor to the firm and that it is crucial to leverage knowledge to newly established subsidiaries abroad as selling-related knowledge is the key driver of sales performance. India is interesting to examine because of its large and fast growing market, which gives reason to establish and sharpen sales activities in the country. Knowledge transfer research has identified three main areas related to this concept; the nature of knowledge, enablers, and impediments. We have explored these three areas using four case studies. Two of the case companies are large MNC’s that are used to obtain general information about knowledge transfer between Sweden and India, while the two latter are smaller MNC’s where information more specific to sales was gathered. At each company, at least one Swede and one Indian employee have been interviewed in order to capture a senderreceiver relationship. In total, eleven interviews and two surveys were conducted over a period of two months in India. Seven propositions form the basis of our theoretical framework and we can support six of them. Based on these, we go on to construct a model for knowledge transfer between Sweden and India. This model is the first of its kind - no earlier research has presented a description of knowledge transfer between Swedish and Indian sales units. Another key finding is how the parent company can transfer their organizational culture to the Indian unit. Cultural differences, especially strong hierarchies and vague communication in India, are identified as the key impediments to knowledge transfer. These cultural gaps can be mitigated by a common cultural context which is why the parent company needs to establish the Swedish organizational culture at the Indian subsidiary, while still respecting the Indian culture in general. We present what motivates Indians to adopt a new organizational culture, how the culture should be communicated, and which practices that are efficient. For expatriate CEO’s - one of the most central practices - we provide a model that can help Swedish managers to decide if a Swedish CEO or Indian managers should be used, from a perspective of how to transfer organizational culture.
4

Processing of vertically aligned carbon nanotubes for heat transfer applications

Cross, Robert 25 August 2008 (has links)
The development of wide band gap semiconductors for power and RF electronics as well as high power silicon microelectronics has pushed the need for advanced thermal management techniques to ensure device reliability. While many techniques to remove large heat fluxes from devices have been developed, fewer advancements have been made in the development of new materials which can be integrated into the packaging architecture. This is especially true in the development of thermal interface materials. Conventional solders are currently being used for interface materials in the most demanding applications, but have issues of high cost, long term reliability and inducing negative thermomechanical effects in active die. Carbon nanotubes have been suggested as a possible thermal interface material which can challenge solders because of their good thermal properties and 1-D structure which can enhance mechanical compliance between surfaces. In this work, we have developed a novel growth and transfer printing method to manufacture vertically aligned CNTs for thermal interface applications. This method follows the nanomaterial transfer printing methods pioneered at Georgia Tech over the past several years. This process is attractive as it separates the high growth synthesis temperatures from the lower temperatures needed during device integration. For this thesis, CNTs were grown on oxidized Si substrates which allowed us to produce high quality vertically aligned CNTs with specific lengths. Through the development of a water vapor assisted etch process, which takes place immediately after CNT synthesis, control over the adhesion of the nanotubes to the growth surface was achieved. By controlling the adhesion we demonstrated the capability to transfer arrays of vertically aligned CNTs to polyimide tape. The CNTs were then printed onto substrates like Si and Cu using a unique gold bonding process. The thermal resistances of the CNTs and the bonded interfaces were measured using the photoacoustic method, and the strength of the CNT interface was measured through tensile tests. Finally, the heat dissipation capabilities of the vertically aligned CNTs were demonstrated through incorporation with high brightness LEDs. A comparison of LED junction temperatures for devices using a CNT and lead free solder thermal interface was made.
5

ASSESSMENT OF CANINE BLADDER FUNCTION RESTORATION USING BEHAVIORAL MONITORING AND IN-VIVO ELECTROPHYSIOLOGICAL TECHNIQUES

Tiwari, Ekta January 2019 (has links)
Spinal cord injuries and other neurological disorders can disturb the regulation of normal bladder function including continence and micturition. Developing new neuronal pathways by surgically rerouting nerves is a potential approach for restoring bladder function. Our laboratory successfully rerouted somatic nerves to the anterior vesical branch of the pelvic nerve to reinnervate the bladder muscle in canines. Electrical stimulation of these transferred nerves induced detrusor pressure and bladder emptying and we confirmed regrowth of these rerouted nerves using retrograde neurotracing methods. In these studies, reinnervation was proved at 1st and 3rd months after decentralization. We believe that our aim of developing an approach to surgically reinnervate the bladder after long-term decentralization is critical to the success of the reinnervation surgery due to the possibility that patients would delay having a surgery until they try other non-surgical approaches or therapies. We also demonstrated the reinnervation of urethral and anal sphincters by femoral to pudendal nerve transfer after sacral ventral root transection to restore continence. However, these studies did not demonstrate the reinnervation of bladder, urethra and anal sphincter, all in same animal that would be helpful to human patients with lower motor neuron lesioned bladders to restore both continence and emptying. Therefore, prior to applying these surgical procedures to human patients, further investigation is required to prove the effectiveness of nerve transfer strategies in this canine model using multiple experimental techniques. This dissertation is a part of a larger project in canines examining whether surgical rerouting of obturator to pelvic nerve and sciatic to pudendal nerve allows restoration of bladder, urethral and anal sphincter functions, including continence (storage) and emptying (voiding and defecation) functions, in lower motor neuron lesioned bladders. In this study, it was aimed to explore bladder and urethral reinnervation using behavioral observation and in-vivo electrophysiological techniques. In order to completely prove that the reinnervation surgeries are responsible for restoration of bladder and urethral functions, it was first necessary to demonstrate the absence of these functions in animals with long term decentralized bladders and to determine whether the same animals were able to recover functions after reinnervation. In specific aim 1, we addressed this goal by tracking squat-and-void behaviors at monthly intervals after decentralization and reinnervation, using home cage video recordings and evaluation of bladder sensation and emptying after bladder filling. Immediately prior to euthanasia, reinnervation was also explored by electrical stimulation of transferred nerves to evaluate motor function. Retrograde neuronal tracing was also performed to explore sensory reinnervation. Results showed evidence of functional restoration of bladder and urethral function in reinnervated animals based on behavior observation and electrical stimulation of transferred nerves. Also, regrowth of neuronal cells in the new neuronal pathways was observed that were developed by the nerve transfer surgeries. This study also aimed to establish an electroneurogram recording method (part of in-vivo electrophysiological experiments) to explore afferent (sensory) neuronal activity in transferred nerves induced by bladder filling. However, the extraction of neuronal activity from the peripheral nerves is a challenging task. Several factors including noise, interference from surrounding muscle activities and the electronic components can affect these microvolts level recordings. Choice of recording electrode in configuration with the whole recording setup also plays a significant role while performing these low amplitude signal recordings. In specific aim 2, we addressed this issue by refining electroneurogram recording techniques to obtain high strength signal during multifiber recording. We first developed custom electrodes, suitable for varying nerve diameters and available implantation sites, were tested for functionality. Then, we performed multiple testing using these electrodes with different amplifiers to calibrate noise in saline. Testing results helped to establish the recording setup suitable for in-vivo experimental environment. Later, these refined techniques were applied to record afferent (sensory) activity of sciatic nerves and afferent (sensory) and efferent (motor) activity of hypogastric nerves in rats. Based on the recording results, it was aimed to employ similar techniques in order to record nerve activity in the canine model. Prior to applying these refined techniques to explore sensory reinnervation from new neuronal pathways after nerve transfer surgeries, in specific aim 3, we aimed to assess the hypogastric nerve activity in normal intact and acutely lumbosacral decentralized bladders using these refined techniques. The effects of electrical stimulation of hypogastric nerves or lumbar roots on detrusor pressure were determined, as were effects of isoflurane versus propofol anesthetics on hypogastric nerve stimulation evoked pressure. Hypogastric nerve activity was recorded using custom-made bipolar cuff electrodes during bladder filling. To confirm or refute that any increase in electroneurogram during bladder filling is due to afferent activity from the end organ, the hypogastric nerve was transected between the recording electrode and the spinal cord and the effects of bladder filling on afferent but not efferent activity were recorded. Results showed that electrical stimulation of hypogastric nerves evoked low amplitude detrusor pressures that did not differ between the two anesthetics. Upper lumbar (L2) ventral root stimulation evoked detrusor pressures were suppressed, yet not eliminated after transection of hypogastric nerves and all spinal roots below L5. Afferent and efferent hypogastric nerve activity did not change with bladder filling in neuronally intact bladders but decreased in decentralized bladders. No change in afferent activity were observed during bladder filling in normal intact and decentralized bladders. Overall findings in this research indicate that the new neuronal pathways created by nerve transfer can restore bladder sensation and emptying function in lower motor neuron-lesioned canines. A more complete decentralized bladder model needs to include transection of both the lumbosacral spinal roots innervating the bladder and the hypogastric nerves prior to performing nerve transfer surgeries. The refined electroneurogram recording methods may be suitable for evaluating the effectiveness of nerve transfer surgeries by monitoring the sensory activities of the transferred nerve. / Electrical and Computer Engineering

Page generated in 0.05 seconds