• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 20
  • 18
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 106
  • 106
  • 38
  • 26
  • 19
  • 19
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pressure Dependence of Thermal Conductivity and Interfacial Thermal Resistance in Epoxy Systems

Dedeepya Valluripally (5930912) 19 December 2018 (has links)
Thermal management in electronic devices is one of the biggest challenges faced by the semiconductor industry. Thermal Interface Materials (TIMs) are used in electronics to fill air gaps between the surfaces of integrated circuit (IC) chips to dissipate heat. Polymer-graphene composites, a very promising choice as TIMs also have a drawback of high interfacial thermal resistance and a low thermal conductivity of polymer. It is known from the theoretical models that application of pressure may affect the thermal conductivity in a desirable manner, but quantitative simulations were not available. In this paper, the pressure dependence of thermal conductivity of epoxy and interfacial resistance at epoxy-graphene interface is studied using non-equilibrium molecular dynamics (NEMD) simulations. The results show that the thermal conductivity of epoxy increases with increase in pressure, and they compare well with the predictions using a theoretical model. The interfacial thermal resistance at epoxy-graphene interface reduces with increase in pressure. The reduction is sharp in the beginning and slowly reaches saturation as pressure increases. At 10 GPa compressive pressure, a 90-95% decrease in interfacial thermal resistance is observed.
2

Thermal performance of closed-cell foam insulation board under different temperature conditions

Jagdev, Gurpreet Singh 05 March 2019 (has links)
Thermal performance of an insulation material is influenced by the in-service temperature condition. Unlike most other insulation materials, thermal resistance (R-value) of polyisocyanurate (polyiso) foam insulation with ‘captive blowing agent’ varies non-linearly with temperature. Building designers consider constant R-value of different insulating materials for building design and energy calculations, and hygrothermal simulation software packages, such as WUFI, consider linear temperature dependent R-value profiles, even for polyiso. However, neither the linear temperature dependent thermal resistance nor the constant thermal resistance value of polyiso represents the actual thermal performance of the building envelope. This thesis aims to quantify the impact of in-service boundary temperature conditions in Canadian climates on the thermal resistance of polyiso foam insulation board used in EPDM and PVC roof constructions. Hygrothermal simulations were performed using WUFI® Pro, which considers real climate data and hygrothermal properties of constituent roof components for evaluating moisture and temperature conditions in roof constructions. Based on heating degree days (HDD), ten different cities were selected between climate Zone 4 (HDD<3000) to Zone 8 (HDD≥7000). The thermal resistance measurements were conducted using heat flow meter apparatus on four polyiso insulation boards (two new and two aged) of different sizes [thickness - new: 1inch (25mm) and 2 inch (51mm); aged: 2 inch (51mm) and 3 inch (76mm)] at five mean temperatures -4°C (25°F), 4.5°C (40°F), 10°C (50°F), 24°C (75°F), 43°C (110°F) and at a temperature differential of 28°C (50°F). The measured thermal resistance data of the four samples at different mean temperatures were normalized with calculated thermal resistance of each sample at 22°C (72°F). The normalized R-value variation was calculated using in-service boundary temperature conditions determined from hygrothermal simulations and considering linearly varied thermal resistance with temperature, for the selected ten Canadian cities. / Graduate
3

Computational Analysis of Thermo-Fluidic Characteristics of a Carbon Nano-Fin

Singh, Navdeep 2010 December 1900 (has links)
Miniaturization of electronic devices for enhancing their performance is associated with higher heat fluxes and cooling requirements. Surface modifi cation by texturing or coating is the most cost-effective approach to enhance the cooling of electronic devices. Experiments on carbon nanotube coated heater surfaces have shown heat transfer enhancement of 60 percent. In addition, silicon nanotubes etched on the silicon substrates have shown heat flux enhancement by as much as 120 percent. The heat flux augmentation is attributed to the combined effects of increase in the surface area due to the protruding nanotubes (nano- n eff ect), disruption of vapor lms and modi fication of the thermal/mass di ffusion boundary layers. Since the e ffects of disruption of vapor lms and modifi cation of the thermal/mass di ffusion boundary layers are similar in the above experiments, the difference in enhancement in heat transfer is the consequence of dissimilar nano- n eff ect. The thermal conductivity of carbon nanotubes is of the order of 6000 W/mK while that of silicon is 150 W/mK. However, in the experiments, carbon nanotubes have shown poor performance compared to silicon. This is the consequence of interfacial thermal resistance between the carbon nanotubes and the surrounding fluid since earlier studies have shown that there is comparatively smaller interface resistance to the heat flow from the silicon surface to the surrounding liquids. At the molecular level, atomic interactions of the coolant molecules with the solid substrate as well as their thermal-physical-chemical properties can play a vital role in the heat transfer from the nanotubes. Characterization of the e ffect of the molecular scale chemistry and structure can help to simulate the performance of a nano fin in diff erent kinds of coolants. So in this work to elucidate the eff ect of the molecular composition and structures on the interfacial thermal resistance, water, ethyl alcohol, 1-hexene, n-heptane and its isomers and chains are considered. Non equilibrium molecular dynamic simulations have been performed to compute the interfacial thermal resistance between the carbon nanotube and different coolants as well as to study the diff erent modes of heat transfer. The approach used in these simulations is based on the lumped capacitance method. This method is applicable due to the very high thermal conductivity of the carbon nanotubes, leading to orders of magnitude smaller temperature gradients within the nanotube than between the nanotube and the coolants. To perform the simulations, a single wall carbon nanotube (nano-fin) is placed at the center of the simulation domain surrounded by fluid molecules. The system is minimized and equilibrated to a certain reference temperature. Subsequently, the temperature of the nanotube is raised and the system is allowed to relax under constant energy. The heat transfer from the nano- fin to the surrounding fluid molecules is calculated as a function of time. The temperature decay rate of the nanotube is used to estimate the relaxation time constant and hence the e ffective thermal interfacial resistance between the nano-fi n and the fluid molecules. From the results it can be concluded that the interfacial thermal resistance depends upon the chemical composition, molecular structure, size of the polymer chains and the composition of their mixtures. By calculating the vibration spectra of the molecules of the fluids, it was observed that the heat transfer from the nanotube to the surrounding fluid occurs mutually via the coupling of the low frequency vibration modes.
4

Thermal performance of ball grid arrays and thin interface materials

Elkady, Yasser Ahmed, Suhling, J. C. Knight, Roy Ward. January 2005 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
5

Constructal design and optimisation of combined microchannels and micro pin fins for microelectronic cooling

Adewumi, Olayinka Omowunmi January 2016 (has links)
Microchannels and micro pin fins have been employed for almost four decades in the cooling of microelectronic devices and research is still being done in this field to improve the thermal performance of these micro heat sinks. In this research, the constructal design and computational fluid dynamics code was used with a goal-driven optimisation tool to numerically investigate the thermal performance of a novel design of combining microchannels and micro pin fins for microelectronic cooling applications. Existing designs of microchannels were first optimised and thereafter, three to seven rows of micro pin fins were inserted into the microchannels to investigate whether there was further improvement in thermal performance. The microchannels and micro pin fins were both embedded in a highly conductive solid substrate. three-dimensional geometric structure of the combined micro heat sink was optimised to achieve the objective of maximised thermal conductance, which is also minimised thermal resistance under various design conditions. The micro heat sinks investigated in the study were the single microchannel, two-layered microchannels with parallel and counter flow configurations, three-layered microchannels with parallel and counter flow configurations, the single microchannel with circular-, square- and hexagonal-shaped micro pin-fin inserts and the two-layered microchannels with circular-shaped micro pin-fin inserts. A numerical computational fluid dynamics (CFD) package with a goal-driven optimisation tool, which employs the finite-volume method, was used to analyse the fluid flow and heat transfer in the micro heat sinks investigated in this work. The thermal performances of all the micro heat sinks were compared for different application scenarios. Furthermore, the temperature variation on the heated base of the solid substrate was studied for the different micro heat sinks to investigate which of the heat sink designs minimised the temperature rise on the heated base best. This is very important in microelectronic cooling applications because temperature rise affects the reliability of the device. The heat sink design that best maximised thermal conductance and minimised temperature rise on the heated base was chosen as the best for microelectronic cooling. For all the cases considered, fixed volume constraints and manufacturing constraints were applied to ensure real-life applicability. It was concluded that optimal heat sink design for different application scenarios could be obtained speedily when a CFD package which had an optimisation tool was used. / Thesis (PhD)--University of Pretoria, 2016. / Mechanical and Aeronautical Engineering / PhD / Unrestricted
6

Monitoring of Conductance Heat Transfer Through the Thermal Envelope of a Commercial Broiler Production House in Situ

Chesser, Gary Daniel 06 May 2017 (has links)
Broiler production requires significant expenditures for heating fuel year round. Poor thermal envelope performance leads to reduced live performance, increased energy use, and reduced profitability. Poultry house building component thermal resistance (R-value) is subject to change over time. To characterize the thermal envelope heat transmission and building component R-value of two broiler houses of different ages, conductive heat flux (W/m2) and temperature gradient (Delta T °C) were monitored with heat flux meter (HFM) arrays and temperature sensors over a 13-month period. Net heat loss and building component (walls and ceiling) thermal resistance were determined from the data. Results showed differences in net heat loss were observed for the ceiling zones where 84% more heat was lost through the ceiling of the older house than that of the newer house (P < 0.05). R-values determined from field measurements for both houses were below estimated theoretical composite R-values. Observed R-values were greater for ceiling envelope zones of the newer house when compared to the older house. Increased heat loss and reductions in ceiling envelope zone R-values for the older house were attributed to shifting and settling of the looseill cellulose attic insulation material, which was especially prevalent at the ceiling peak zone. To verify the feasibility of using sol-air temperature in lieu of outside air temperature to account for radiant load during warm conditions, field measurements of temperature (°C) (interior air, exterior air, and exterior surface) and solar radiation (W/m2) were recorded of a broiler house. Sol-air temperatures were calculated from these data. Observed maximum daily air temperatures were significantly different (P<0.0001) from maximum surface and sol-air temperatures. Maximum surface and sol-air temperatures were not significantly different (P=0.2144, P=0.1544). Simulations of conductive heat transfer by air and sol-air temperatures using climatic data showed heat gain as calculated by sol-air Delta T was considerably higher when compared to heat gain calculated by air Delta T. This study supports the rationale that the sol-air temperature concept results in improved estimates of conductive heat transfer during daytime conditions which can be used to optimize insulation and ventilation requirements for broiler houses during warm conditions.
7

Carbon Nanostructures As Thermal Interface Materials: Processing And Properties

Memon, Muhammad Omar 16 May 2011 (has links)
No description available.
8

Analysis of Direct-Soldered Power Module / Heat Sink Thermal Interface for Electric Vehicle Applications

Kim, Junhyung 06 May 2001 (has links)
Reducing the thermal impedance between power module and heat sink is important for high-power density, low-cost inverter applications. Mounting a power module by directly soldering it onto a heat sink can significantly reduce the thermal impedance at the module / heat sink interface, as compared to the conventional method of bolting the two together with a thermal grease or some other interface materials in between. However, a soldered interface typically contains a large number of voids, which results in local hot spots. This thesis describes approaches taken to reduce voids in the solder layer through surface treatment, solder paste selection, and adjustment in solder-reflow conditions. A 15MHz scanning acoustic microscope (SAM), a non-destructive inspection tool, was used to determine the void content at the module / heat sink interface. The experimental results show that a significant reduction in thermal resistance can be achieved by reducing the void content at the soldered module / heat sink interface. Moreover, a comparison of the thermal resistances in cases using the worst soldering, which contains the largest voided area, ThermstrateTM and thermal grease are presented. Thermal performances of the modules are studied by simulation with Flotherm. / Master of Science
9

Avaliação da cinética de crescimento, resistência ácida e resistência térmica de Salmonella enteritidis envolvida em surtos alimentares ocorridos no Rio Grande do Sul e comparação com outros sorovares / Growth kinetics, acid and thermal resistance of Salmonella enteritidis involved in foodborne outbreaks occurred in the Rio Grande do Sul state and comparation with other serovars

Malheiros, Patricia da Silva January 2007 (has links)
No período de 1999 a 2002, uma linhagem de Salmonella Enteritidis esteve envolvida em mais de 90% das salmoneloses ocorridas no RS. Este trabalho teve por objetivo avaliar a cinética de crescimento, a resistência ácida e a resistência térmica dessa linhagem e compará-la com S. Typhimurium e S. Bredeney não envolvidas em surtos alimentares, porém isoladas na mesma região. Em uma primeira etapa, a cinética de crescimento foi avaliada semeando-se cada sorovar em caldo nutriente (CN) e em salada de batata com maionese caseira (SMC), os quais foram mantidos a 30°C e 9,5°C. Em CN, a cinética de crescimento a 30°C foi semelhante para todos os sorovares, porém, em SMC a S. Enteritidis apresentou maior quantidade de células nas primeiras 6 horas de crescimento, sendo que somente depois de 12 horas todos os sorovares atingiram quantidades semelhantes de células. Em CN e em SMC, na temperatura de 9,5°C, não foi detectado crescimento de nenhum dos sorovares de Salmonella durante as primeiras 24 horas, sugerindo que essa temperatura foi suficiente para controlar a multiplicação desses microrganismos. Em uma segunda etapa, avaliou-se a resistência ácida e térmica dos diferentes sorovares de Salmonella. Para tanto, os três sorovares foram inoculados separadamente em CN e CN enriquecido com 1% de glicose (CNG), este último utilizado para produção de culturas ácido-adaptadas. Em seguida, os microrganismos foram submetidos a diferentes pH (3,5; 4,0 e 4,5) e temperaturas (52, 56 e 60ºC). Os resultados demonstraram que a S. Bredeney apresentou maior resistência para os pH 3,5 e 4,0, porém a S. Enteritidis demonstrou maior capacidade de adaptação ácida do que S. Typhimurium e S. Bredeney. Em pH 4,5 todos os sorovares, tanto não adaptados quanto ácido-adaptados, mantiveram a mesma quantidade de células viáveis durante 300 minutos. Quando expostas a 52ºC, S. Bredeney apresentou maior resistência, entretanto somente a S. Enteritidis foi protegida com a adaptação ácida. Para 56 e 60ºC, a S. Enteritidis, não adaptada e ácido-adaptada, apresentou maior resistência. A análise por SDS-PAGE demonstrou diferenças no perfil protéico de células não adaptadas e ácidoadaptadas para todos os sorovares testados. Com base nestes resultados, a capacidade de multiplicação mais rápida nas primeiras horas de cultivo em SMC, a maior capacidade de adaptação ácida e a maior resistência térmica demonstradas pela S. Enteritidis podem estar relacionadas ao freqüente envolvimento desse sorovar nas salmoneloses do RS. / During the period of 1999 to 2002, a strain of Salmonella Enteritidis was involved in more than 90 % of foodborne salmonellosis occurred in Rio Grande do Sul (RS) State. This work aimed to evaluate the growth kinetics, and the acid and the thermal resistance of this strain, comparing with S. Typhimurium and S. Bredeney, which were not involved in foodborne outbreaks, but were isolated in the same region. In the first stage of this study, the growth kinetics was assessed. Each serovar was inoculated separately in nutrient broth (CN) and in potato salad prepared with homemade mayonnaise (SMC), and then incubated at 30 ºC and 9.5 ºC. In CN, at 30 ºC, similar growing characteristics were found for all serovars, however in SMC S. Enteritidis demonstrated higher counts at the first 6 hours. Only after 12 hours of incubation, all serovars reached similar counts. In CN and in SMC, at 9.5 ºC, during the first 24 hours, there was no detectable growth of any Salmonella serovar, suggesting that such temperature was adequate to control the multiplication of tested Salmonella serovars. In the second stage of the study, the acid and the thermal resistances of Salmonella serovars were evaluated. The three serovars were cultivated separately in Nutrient Broth and Nutrient Broth supplemented with 1 % glucose (NBG). The latter medium was used to induce acid-adapted cells. Then, the three serovars were exposed to different pH (3.5, 4.0, and 4.5) and temperatures (52, 56, and 60 ºC). Results indicated that S. Bredeney presented higher resistance to pH 3.5 and 4.0, but S. Enteritidis presented a better capacity of acid adaptation than S. Typhimurium and S. Bredeney. At pH 4.5, all serovars demonstrated a similar behavior, remaining at same levels of viable cells until 300 minutes. At 52 ºC, S. Bredeney presented greater survivor rates, however acid adaptation protected only S. Enteritidis. At 56 ºC and 60 ºC, non-adapted and acidadapted S. Enteritidis were more thermally resistant than other serovars tested. SDS-PAGE analysis demonstrated differences in protein profile of non-adapted and acid-adapted cells of all serovars. The capacity of rapid multiplication in the first hours of cultivation, the greater acid adaptation and thermal resistance presented by S. Enteritidis, may be related to the frequent involvement of this strain in salmonellosis cases in the RS.
10

Numerical and Experimental Investigation of Inorganic Nanomaterials for Thermal Energy Storage (TES) and Concentrated Solar Power (CSP) Applications

Jung, Seunghwan 2012 May 1900 (has links)
The objective of this study is to synthesize nanomaterials by mixing molten salt (alkali nitrate salt eutectics) with inorganic nanoparticles. The thermo-physical properties of the synthesized nanomaterials were characterized experimentally. Experimental results allude to the existence of a distinct compressed phase even for the solid phase (i.e., in the nanocomposite samples). For example, the specific heat capacity of the nanocomposites was observed to be enhanced after melting and re-solidification - immediately after their synthesis; than those of the nanocomposites that were not subjected to melting and re-solidification. This shows that melting and re-solidification induced molecular reordering (i.e., formation of a compressed phase on the nanoparticle surface) even in the solid phase - leading to enhancement in the specific heat capacity. Numerical models (using analytical and computational approaches) were developed to simulate the fundamental transport mechanisms and the energy storage mechanisms responsible for the observed enhancements in the thermo-physical properties. In this study, a simple analytical model was proposed for predicting the specific heat capacity of nanoparticle suspensions in a solvent. The model explores the effect of the compressed phase – that is induced from the solvent molecules - at the interface with individual nanoparticles in the mixture. The results from the numerical simulations indicate that depending on the properties and morphology of the compressed phase – it can cause significant enhancement in the specific heat capacity of nanofluids and nanocomposites. The interfacial thermal resistance (also known as Kapitza resistance, or “Rk”) between a nanoparticle and the surrounding solvent molecules (for these molten salt based nanomaterials) is estimated using Molecular Dynamics (MD) simulations. This exercise is relevant for the design optimization of nanomaterials (nanoparticle size, shape, material, concentration, etc.). The design trade-off is between maximizing the thermal conductivity of the nanomaterial (which typically occurs for nanoparticle size varying between ~ 20-30nm) and maximizing the specific heat capacity (which typically occurs for nanoparticle size less than 5nm), while simultaneously minimizing the viscosity of the nanofluid. The specific heat capacity of nitrate salt-based nanomaterials was measured both for the nanocomposites (solid phase) and nanofluids (liquid phase). The neat salt sample was composed of a mixture of KNO3: NaNO3 (60:40 molar ratio). The enhancement of specific heat capacity of the nanomaterials obtained from the salt samples was found to be very sensitive to minor variations in the synthesis protocol. The measurements for the variation of the specific heat capacity with the mass concentration of nanoparticles were compared to the predictions from the analytical model. Materials characterization was performed using electron microscopy techniques (SEM and TEM). The rheological behavior of nanofluids can be non-Newtonian (e.g., shear thinning) even at very low mass concentrations of nanoparticles, while (in contrast) the pure undoped (neat) molten salt may be a Newtonian fluid. Such viscosity enhancements and change in rheological properties of nanofluids can be detrimental to the operational efficiencies for thermal management as well as energy storage applications (which can effectively lead to higher costs for energy conversion). Hence, the rheological behavior of the nanofluid samples was measured experimentally and compared to that of the neat solvent (pure molten salt eutectic). The viscosity measurements were performed for the nitrate based molten salt samples as a function of temperature, shear rate and the mass concentration of the nanoparticles. The experimental measurements for the rheological behavior were compared with analytical models proposed in the literature. The results from the analytical and computational investigations as well as the experimental measurements performed in this proposed study – were used to formulate the design rules for maximizing the enhancement in the thermo-physical properties (particularly the specific heat capacity) of various molten salt based inorganic nanomaterials. The results from these studies are summarized and the future directions are identified as a conclusion from this study.

Page generated in 0.1 seconds