• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for use in Concentrating Solar Power Plants

Malik, Darren R. 2010 May 1900 (has links)
The focus of this research was to create and characterize high temperature alumina and nitrate salt eutectic nanofluids for use in thermal energy storage (TES) systems. The nitrate eutectic was originally used in the TES system demonstrated as part of the Solar Two power tower and is currently employed as the TES material at Andasol 1 in Spain. Concentrations of alumina nanoparticles between 0.1% and 10% by weight were introduced into the base material in an effort to create nanofluids which would exhibit improved specific heat capacity to reduce the $/kWht thermal energy storage system costs. The composite materials were created using an aqueous mixing method in which both the nanoparticles and nitrate eutectic were placed into solution using acidic water. This solution was then sonicated in an ultrasonic bath in an effort to reduce nanoparticle agglomeration and to improve homogeneity. After boiling off the excess water, the nanoparticle-nitrate eutectic composite was recovered for characterization. The thermal properties of both the composite and base materials were characterized using the differential scanning calorimetry techniques outlined in ASTM E 1269. The created nanofluids were not stable and did not offer a cost-effective alternative to the current nitrate eutectic TES material. Despite these setbacks, a positive correlation between alumina concentration and nanofluid specific heat was demonstrated. Additionally, the specific heat capacities of the created nanofluids exceeded that predicted by the current theoretical models. These findings suggest that further work in the field of high temperature nanofluids for use in TES systems is warranted.
2

Numerical and Experimental Investigation of Inorganic Nanomaterials for Thermal Energy Storage (TES) and Concentrated Solar Power (CSP) Applications

Jung, Seunghwan 2012 May 1900 (has links)
The objective of this study is to synthesize nanomaterials by mixing molten salt (alkali nitrate salt eutectics) with inorganic nanoparticles. The thermo-physical properties of the synthesized nanomaterials were characterized experimentally. Experimental results allude to the existence of a distinct compressed phase even for the solid phase (i.e., in the nanocomposite samples). For example, the specific heat capacity of the nanocomposites was observed to be enhanced after melting and re-solidification - immediately after their synthesis; than those of the nanocomposites that were not subjected to melting and re-solidification. This shows that melting and re-solidification induced molecular reordering (i.e., formation of a compressed phase on the nanoparticle surface) even in the solid phase - leading to enhancement in the specific heat capacity. Numerical models (using analytical and computational approaches) were developed to simulate the fundamental transport mechanisms and the energy storage mechanisms responsible for the observed enhancements in the thermo-physical properties. In this study, a simple analytical model was proposed for predicting the specific heat capacity of nanoparticle suspensions in a solvent. The model explores the effect of the compressed phase – that is induced from the solvent molecules - at the interface with individual nanoparticles in the mixture. The results from the numerical simulations indicate that depending on the properties and morphology of the compressed phase – it can cause significant enhancement in the specific heat capacity of nanofluids and nanocomposites. The interfacial thermal resistance (also known as Kapitza resistance, or “Rk”) between a nanoparticle and the surrounding solvent molecules (for these molten salt based nanomaterials) is estimated using Molecular Dynamics (MD) simulations. This exercise is relevant for the design optimization of nanomaterials (nanoparticle size, shape, material, concentration, etc.). The design trade-off is between maximizing the thermal conductivity of the nanomaterial (which typically occurs for nanoparticle size varying between ~ 20-30nm) and maximizing the specific heat capacity (which typically occurs for nanoparticle size less than 5nm), while simultaneously minimizing the viscosity of the nanofluid. The specific heat capacity of nitrate salt-based nanomaterials was measured both for the nanocomposites (solid phase) and nanofluids (liquid phase). The neat salt sample was composed of a mixture of KNO3: NaNO3 (60:40 molar ratio). The enhancement of specific heat capacity of the nanomaterials obtained from the salt samples was found to be very sensitive to minor variations in the synthesis protocol. The measurements for the variation of the specific heat capacity with the mass concentration of nanoparticles were compared to the predictions from the analytical model. Materials characterization was performed using electron microscopy techniques (SEM and TEM). The rheological behavior of nanofluids can be non-Newtonian (e.g., shear thinning) even at very low mass concentrations of nanoparticles, while (in contrast) the pure undoped (neat) molten salt may be a Newtonian fluid. Such viscosity enhancements and change in rheological properties of nanofluids can be detrimental to the operational efficiencies for thermal management as well as energy storage applications (which can effectively lead to higher costs for energy conversion). Hence, the rheological behavior of the nanofluid samples was measured experimentally and compared to that of the neat solvent (pure molten salt eutectic). The viscosity measurements were performed for the nitrate based molten salt samples as a function of temperature, shear rate and the mass concentration of the nanoparticles. The experimental measurements for the rheological behavior were compared with analytical models proposed in the literature. The results from the analytical and computational investigations as well as the experimental measurements performed in this proposed study – were used to formulate the design rules for maximizing the enhancement in the thermo-physical properties (particularly the specific heat capacity) of various molten salt based inorganic nanomaterials. The results from these studies are summarized and the future directions are identified as a conclusion from this study.
3

Temperature Dependence Of The Spectroscopic And Structural Properties Of Tlgas2 And Tlins2 Crystals

Acikgoz, Muhammed 01 August 2004 (has links) (PDF)
The results of photoluminescence (PL) spectra of TlGaS2 single crystal were reported in the 500-1400 nm wavelength and in the 15-115 K temperature range. Three broad PL bands with an asymmetric Gaussian lineshapes were observed to be centered at 568 nm (A-band), 718 nm (B-band) and 1102 nm (C-band). The shift of the emission band peak energy as well as the change of the half-width of the emission band with temperature and excitation laser intensity were also studied. We analyzed the observed results using the configurational coordinate (CC) model. The powder diffraction patterns of TlInS2 and TlGaS2 crystals were obtained and the diffraction data were indexed using CRYSFIRE computer program packet. TlInS2 has hexagonal system with parameters a = 3.83 and c = 14.88 Ao. TlGaS2 has monoclinic system with parameters a = 9.62, b = 4.01 and c = 7.52 Ao with &amp / #946 / = 96.30o. Our diffraction studies at low temperatures did not reveal any phase transition for TlInS2 as reported in the literature. The specific heat capacities of both TlInS2 and TlGaS2 crystals calculated from Differential Scanning Calorimetry (DSC) measurements at low temperatures are reported in the thesis.
4

Prediction of Specific Heat Capacity of Food Lipids and Foods

Zhu, Xiaoyi 20 October 2015 (has links)
No description available.
5

INFLUENCE OF CARBON CONTENT AND COOLING CONDITIONS ON THE THERMAL CONDUCTIVITY AND TENSILE STRENGTH OF HIGH SILICON LAMELLAR GRAPHITE IRON

Ram, Gokul, Harikrishnan, Vishnu January 2020 (has links)
Much study has been carried out to determine the properties of Lamellar Graphite Iron (LGI) or grey iron and their relations to factors such as the cooling rate, the dendrite morphology, the pouring temperature, and so on. However, there hasn’t been much comprehensive study on the properties of LGI outside the generally used and accepted composition, with 1 to 3% Silicon. The scope of this study is to measure and evaluate the thermal conductivity and tensile strength of LGI, for a higher concentration of  Si and different carbon contents. The concentration of Si aimed for was 4% but the concentration obtained after spectroscopy was between 4.1% to 4.15%. There are two hypereutectic, one near-eutectic and three hypoeutectic samples considered and these six chemical compositions were cast under different cooling conditions . The cooling time has been varied by providing different molds of 30mm, 55mm, and 80mm diameter cylinders respectively, for all the six sample compositions. The microstructure analysis carried out studies the segregation of Si, the graphite morphology, primary austenite morphology. These factors are then compared to the thermal and tensile behavior measured in this study. It can be observed that the thermal conductivity studied in the present work has a direct correlation for a higher Si content and tends to be greater than the thermal conductivity values observed from other studies with lower content Of Si. However, the conductivity shows an inverse relation with the cooling rate and is maximum for the samples with the lowest cooling rate. The tensile strength, on the other hand, seems to have a lower value than that observed in previous studies for LGI with 1 to 3% Si, but shows a direct correlation with the cooling rate. The mean area fraction of dendrites obtained and the mean interdendritic hydraulic diameter is also measured and their influence on the properties are also studied. The addition of more Si has greatly favored the thermal behavior positively but has also reduced the tensile strength.

Page generated in 0.0892 seconds