• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improvements on Trained Across Multiple Experiments (TAME), a New Method for Treatment Effect Detection

Patikorn, Thanaporn 08 May 2017 (has links)
One of my previous works introduced a new data mining technique to analyze multiple experiments called TAME: Trained Across Multiple Experiments. TAME detects treatment effects of a randomized controlled experiment by utilizing data from outside of the experiment of interest. TAME with linear regression showed promising result; in all simulated scenarios, TAME was at least as good as a standard method, ANOVA, and was significantly better than ANOVA in certain scenarios. In this work, I further investigated and improved TAME by altering how TAME assembles data and creates subject models. I found that mean-centering “prior� data and treating each experiment as equally important allow TAME to detect treatment effects better. In addition, we did not find Random Forest to be compatible with TAME.

Page generated in 0.128 seconds