• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Remediation of NAPL-contaminated soils and groundwater by a three-stage treatment train system

Tsai, Tzai-Tang 21 August 2009 (has links)
The industrial solvent trichloroethylene (TCE) and petroleum hydrocarbons (e.g., fuel oil) are among the most ubiquitous organic compounds found in subsurface contaminated environment. The developed treatment train system included the first stage of groundwater and surfactant flushing followed by the second stage of chemical oxidation such as potassium permanganate (KMnO4) and Fenton-like treatment. The third stage was the application of enhanced bioremediation for the further removal of residual contaminants after the first two treatment processes. The objectives of this study were to (1) assess the applicability of treatment train system for the remediation of organic compounds contaminated subsurface environment, (2) determine the optimal operational conditions of the three-stage treatment system, and (3) evaluate the effects of residual surfactant Simple GreenTM (SG) and hydrogen peroxide (H2O2) after chemical oxidation stage on the efficiency of bioremediation process. In this study, three different surfactants [SG, Triton X-100, and Tween 80] were evaluated in batch experiments for their feasibility on contaminants removal. Results from the surfactant biodegradation and microbial enumeration study indicate that SG was more biodegradable and was able to enhance the microbial activity of the intrinsic microorganisms. Thus, SG was applied in the following batch or column experiments of the treatment train system. Results from this study indicate that approximately 87.6% of TCE in the system (with initial concentration of 40 mg L-1) could be removed from the simulated dense non-aqueous-phase liquids (DNAPLs) system after groundwater flushing followed by biodegradable surfactant (1 g L-1 of SG) flushing, while the TCE concentrations dropped from 40 to 4.96 mg L-1 at the end of the flushing experiment. Moreover, approximately 10.7% of the remaining TCE could be removed from the system after the oxidation process using KMnO4 as the oxidant. Results from the oxidation process show that TCE was reduced from 4.96 to 0.69 mg L-1, and chloride concentation was increased from ND to 0.88 mg L-1 with the presence of 1 g L-1 of SG. The residual 1.7% of the TCE could be further remediated via the enhanced bioremediation stage, and the TCE concentrations dropped from 0.69 mg L-1 to below detection limit at the end of the bioremediation experiment. Results also indicate that the remaining KMnO4 had no significant inhibition on bacterial growth and TCE biodegradation. Thus, SG flushing and KMnO4 oxidation would not cause adverse effect on subsequent bioremediation process using intrinsic bacteria. Thus, complete TCE remediation was observed in this study using the three-stage treatment scheme. Results from the column experiment reveal that a complete TPH removal could be obtained after the application of three consecutive treatment processes. Results show that TPH concentration could be reduced from 50,000 mg kg-1 to below detection limit. This indicates that the treatment train system is a promising technology to remediate fuel-oil contaminated soils. Results from the column study indicate that approximate 80.3% of initial TPH in the soil could be removed after the SG [50 pore volumes (PVs)] followed by groundwater (30 PVs) flushing. The Fenton-like oxidation (with 6% of H2O2 addition) was able to remove another 15.0% of TPH. The observed first-order reaction rate constant of TPH oxidation was 2.74¡Ñ10-2 min-1, and the half-life was 25.3 min during the first 40 min of reaction. The residual 4.7% of the TPH could be further remediated via the aerobic bioremediation process. Thus, complete TPH removal was obtained in this study using the three-stage treatment scheme. The proposed treatment train system would be expected to provide a more efficient and cost-effective alternative to remediate chlorinated solvent and petroleum hydrocarbons contaminated sites.

Page generated in 0.1472 seconds