• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Integrality Gap of Directed Steiner Tree Problem

Shadravan, Mohammad January 2014 (has links)
In the Directed Steiner Tree problem, we are given a directed graph G = (V,E) with edge costs, a root vertex r ∈ V, and a terminal set X ⊆ V . The goal is to find the cheapest subset of edges that contains an r-t path for every terminal t ∈ X. The only known polylogarithmic approximations for Directed Steiner Tree run in quasi-polynomial time and the best polynomial time approximations only achieve a guarantee of O(|X|^ε) for any constant ε > 0. Furthermore, the integrality gap of a natural LP relaxation can be as bad as Ω(√|X|).  We demonstrate that l rounds of the Sherali-Adams hierarchy suffice to reduce the integrality gap of a natural LP relaxation for Directed Steiner Tree in l-layered graphs from Ω( k) to O(l · log k) where k is the number of terminals. This is an improvement over Rothvoss’ result that 2l rounds of the considerably stronger Lasserre SDP hierarchy reduce the integrality gap of a similar formulation to O(l · log k). We also observe that Directed Steiner Tree instances with 3 layers of edges have only an O(logk) integrality gap bound in the standard LP relaxation, complementing the fact that the gap can be as large as Ω(√k) in graphs with 4 layers. Finally, we consider quasi-bipartite instances of Directed Steiner Tree meaning no edge in E connects two Steiner nodes V − (X ∪ {r}). By a simple reduction from Set Cover, it is still NP-hard to approximate quasi-bipartite instances within a ratio better than O(log|X|). We present a polynomial-time O(log |X|)-approximation for quasi-bipartite instances of Directed Steiner Tree. Our approach also bounds the integrality gap of the natural LP relaxation by the same quantity. A novel feature of our algorithm is that it is based on the primal-dual framework, which typically does not result in good approximations for network design problems in directed graphs.
2

Statistical inference of time-dependent data

Suhas Gundimeda (5930648) 11 May 2020 (has links)
Probabilistic graphical modeling is a framework which can be used to succinctly<br>represent multivariate probability distributions of time series in terms of each time<br>series’s dependence on others. In general, it is computationally prohibitive to sta-<br>tistically infer an arbitrary model from data. However, if we constrain the model to<br>have a tree topology, the corresponding learning algorithms become tractable. The<br>expressive power of tree-structured distributions are low, since only n − 1 dependen-<br>cies are explicitly encoded for an n node tree. One way to improve the expressive<br>power of tree models is to combine many of them in a mixture model. This work<br>presents and uses simulations to validate extensions of the standard mixtures of trees<br>model for i.i.d data to the setting of time series data. We also consider the setting<br>where the tree mixture itself forms a hidden Markov chain, which could be better<br>suited for approximating time-varying seasonal data in the real world. Both of these<br>are evaluated on artificial data sets.<br><br>

Page generated in 0.3139 seconds