• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A reformulation of Coombs' Theory of Unidimensional Unfolding by representing attitudes as intervals

Johnson, Timothy Kevin January 2004 (has links)
An examination of the logical relationships between attitude statements suggests that attitudes can be ordered according to favourability, and can also stand in relationships of implication to one another. The traditional representation of attitudes, as points on a single dimension, is inadequate for representing both these relations but representing attitudes as intervals on a single dimension can incorporate both favourability and implication. An interval can be parameterised using its two endpoints or alternatively by its midpoint and latitude. Using this latter representation, the midpoint can be understood as the �favourability� of the attitude, while the latitude can be understood as its �generality�. It is argued that the generality of an attitude statement is akin to its latitude of acceptance, since a greater semantic range increases the likelihood of agreement. When Coombs� Theory of Unidimensional Unfolding is reformulated using the interval representation, the key question is how to measure the distance between two intervals on the dimension. There are innumerable ways to answer this question, but the present study restricts attention to eighteen possible �distance� measures. These measures are based on nine basic distances between intervals on a dimension, as well as two families of models, the Minkowski r-metric and the Generalised Hyperbolic Cosine Model (GHCM). Not all of these measures are distances in the strict sense as some of them fail to satisfy all the metric axioms. To distinguish between these eighteen �distance� measures two empirical tests, the triangle inequality test, and the aligned stimuli test, were developed and tested using two sets of attitude statements. The subject matter of the sets of statements differed but the underlying structure was the same. It is argued that this structure can be known a priori using the logical relationships between the statement�s predicates, and empirical tests confirm the underlying structure and the unidimensionality of the statements used in this study. Consequently, predictions of preference could be ascertained from each model and either confirmed or falsified by subjects� judgements. The results indicated that the triangle inequality failed in both stimulus sets. This suggests that the judgement space is not metric, contradicting a common assumption of attitude measurement. This result also falsified eleven of the eighteen �distance� measures because they predicted the satisfaction of the triangle inequality. The aligned stimuli test used stimuli that were aligned at the endpoint nearest to the ideal interval. The results indicated that subjects preferred the narrower of the two stimuli, contrary to the predictions of six of the measures. Since these six measures all passed the triangle inequality test, only one measure, the GHCM (item), satisfied both tests. However, the GHCM (item) only passes the aligned stimuli tests with additional constraints on its operational function. If it incorporates a strictly log-convex function, such as cosh, the GHCM (item) makes predictions that are satisfied in both tests. This is also evidence that the latitude of acceptance is an item rather than a subject or combined parameter.
2

A reformulation of Coombs' Theory of Unidimensional Unfolding by representing attitudes as intervals

Johnson, Timothy Kevin January 2004 (has links)
An examination of the logical relationships between attitude statements suggests that attitudes can be ordered according to favourability, and can also stand in relationships of implication to one another. The traditional representation of attitudes, as points on a single dimension, is inadequate for representing both these relations but representing attitudes as intervals on a single dimension can incorporate both favourability and implication. An interval can be parameterised using its two endpoints or alternatively by its midpoint and latitude. Using this latter representation, the midpoint can be understood as the �favourability� of the attitude, while the latitude can be understood as its �generality�. It is argued that the generality of an attitude statement is akin to its latitude of acceptance, since a greater semantic range increases the likelihood of agreement. When Coombs� Theory of Unidimensional Unfolding is reformulated using the interval representation, the key question is how to measure the distance between two intervals on the dimension. There are innumerable ways to answer this question, but the present study restricts attention to eighteen possible �distance� measures. These measures are based on nine basic distances between intervals on a dimension, as well as two families of models, the Minkowski r-metric and the Generalised Hyperbolic Cosine Model (GHCM). Not all of these measures are distances in the strict sense as some of them fail to satisfy all the metric axioms. To distinguish between these eighteen �distance� measures two empirical tests, the triangle inequality test, and the aligned stimuli test, were developed and tested using two sets of attitude statements. The subject matter of the sets of statements differed but the underlying structure was the same. It is argued that this structure can be known a priori using the logical relationships between the statement�s predicates, and empirical tests confirm the underlying structure and the unidimensionality of the statements used in this study. Consequently, predictions of preference could be ascertained from each model and either confirmed or falsified by subjects� judgements. The results indicated that the triangle inequality failed in both stimulus sets. This suggests that the judgement space is not metric, contradicting a common assumption of attitude measurement. This result also falsified eleven of the eighteen �distance� measures because they predicted the satisfaction of the triangle inequality. The aligned stimuli test used stimuli that were aligned at the endpoint nearest to the ideal interval. The results indicated that subjects preferred the narrower of the two stimuli, contrary to the predictions of six of the measures. Since these six measures all passed the triangle inequality test, only one measure, the GHCM (item), satisfied both tests. However, the GHCM (item) only passes the aligned stimuli tests with additional constraints on its operational function. If it incorporates a strictly log-convex function, such as cosh, the GHCM (item) makes predictions that are satisfied in both tests. This is also evidence that the latitude of acceptance is an item rather than a subject or combined parameter.
3

The Cauchy-Schwarz inequality : Proofs and applications in various spaces / Cauchy-Schwarz olikhet : Bevis och tillämpningar i olika rum

Wigren, Thomas January 2015 (has links)
We give some background information about the Cauchy-Schwarz inequality including its history. We then continue by providing a number of proofs for the inequality in its classical form using various proof techniques, including proofs without words. Next we build up the theory of inner product spaces from metric and normed spaces and show applications of the Cauchy-Schwarz inequality in each content, including the triangle inequality, Minkowski's inequality and Hölder's inequality. In the final part we present a few problems with solutions, some proved by the author and some by others.
4

Ranking from Pairwise Comparisons : The Role of the Pairwise Preference Matrix

Rajkumar, Arun January 2016 (has links) (PDF)
Ranking a set of candidates or items from pair-wise comparisons is a fundamental problem that arises in many settings such as elections, recommendation systems, sports team rankings, document rankings and so on. Indeed it is well known in the psychology literature that when a large number of items are to be ranked, it is easier for humans to give pair-wise comparisons as opposed to complete rankings. The problem of ranking from pair-wise comparisons has been studied in multiple communities such as machine learning, operations research, linear algebra, statistics etc., and several algorithms (both classic and recent) have been proposed. However, it is not well under-stood under what conditions these different algorithms perform well. In this thesis, we aim to fill this fundamental gap, by elucidating precise conditions under which different algorithms perform well, as well as giving new algorithms that provably perform well under broader conditions. In particular, we consider a natural statistical model wherein for every pair of items (i; j), there is a probability Pij such that each time items i and j are compared, item j beats item i with probability Pij . Such models, which we summarize through a matrix containing all these pair-wise probabilities, have been used explicitly or implicitly in much previous work in the area; we refer to the resulting matrix as the pair-wise preference matrix, and elucidate clearly the crucial role it plays in determining the performance of various algorithms. In the first part of the thesis, we consider a natural generative model where all pairs of items can be sampled and where the underlying preferences are assumed to be acyclic. Under this setting, we elucidate the conditions on the pair-wise preference matrix under which popular algorithms such as matrix Borda, spectral ranking, least squares and maximum likelihood under a Bradley-Terry-Luce (BTL) model produce optimal rankings that minimize the pair-wise disagreement error. Specifically, we derive explicit sample complexity bounds for each of these algorithms to output an optimal ranking under interesting subclasses of the class of all acyclic pair-wise preference matrices. We show that none of these popular algorithms is guaranteed to produce optimal rankings for all acyclic preference matrices. We then pro-pose a novel support vector machine based rank aggregation algorithm that provably does so. In the second part of the thesis, we consider the setting where preferences may contain cycles. Here, finding a ranking that minimizes the pairwise disagreement error is in general NP-hard. However, even in the presence of cycles, one may wish to rank 'good' items ahead of the rest. We develop a framework for this setting using notions of winners based on tournament solution concepts from social choice theory. We first show that none of the existing algorithms are guaranteed to rank winners ahead of the rest for popular tournament solution based winners such as top cycle, Copeland set, Markov set etc. We propose three algorithms - matrix Copeland, unweighted Markov and parametric Markov - which provably rank winners at the top for these popular tournament solutions. In addition to ranking winners at the top, we show that the rankings output by the matrix Copeland and the parametric Markov algorithms also minimize the pair-wise disagreement error for certain classes of acyclic preference matrices. Finally, in the third part of the thesis, we consider the setting where the number of items to be ranked is large and it is impractical to obtain comparisons among all pairs. Here, one samples a small set of pairs uniformly at random and compares each pair a fixed number of times; in particular, the goal is to come up with good algorithms that sample comparisons among only O(nlog(n)) item pairs (where n is the number of items). Unlike existing results for such settings, where one either assumes a noisy permutation model (under which there is a true underlying ranking and the outcome of every comparison differs from the true ranking with some fixed probability) or assumes a BTL or Thurstone model, we develop a general algorithmic framework based on ideas from matrix completion, termed low-rank pair-wise ranking, which provably produces an good ranking by comparing only O(nlog(n)) pairs, O(log(n)) times each, not only for popular classes of models such as BTL and Thurstone, but also for much more general classes of models wherein a suitable transform of the pair-wise probabilities leads to a low-rank matrix; this subsumes the guarantees of many previous algorithms in this setting. Overall, our results help to understand at a fundamental level the statistical properties of various algorithms for the problem of ranking from pair-wise comparisons, and under various natural settings, lead to novel algorithms with improved statistical guarantees compared to existing algorithms for this problem.

Page generated in 0.2479 seconds