• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Geometric B-Spline Over the Triangular Domain

Ingram, Christopher January 2003 (has links)
For modelling curves, B-splines [3] are among the most versatile control schemes. However, scaling this technique to surface patches has proven to be a non-trivial endeavor. While a suitable scheme exists for rectangular patches in the form of tensor product B-splines, techniques involving the triangular domain are much less spectacular. The current cutting edge in triangular B-splines [2] is the DMS-spline. While the resulting surfaces possess high degrees of continuity, the control scheme is awkward and the evaluation is computationally expensive. A more fundamental problem is the construction bears little resemblance to the construction used for the B-Spline. This deficiency leads to the central idea of the thesis; what happens if the simple blending functions found at the heart of the B-Spline construction are used over higher dimension domains? In this thesis I develop a geometric generalization of B-Spline curves over the triangular domain. This construction mimics the control point blending that occurs with uniform B-Splines. The construction preserves the simple control scheme and evaluation of B-Splines, without the immense computational requirements of DMS-splines. The result is a new patch control scheme, the G-Patch, possessing <i>C</i>0 continuity between adjacent patches.
2

A Geometric B-Spline Over the Triangular Domain

Ingram, Christopher January 2003 (has links)
For modelling curves, B-splines [3] are among the most versatile control schemes. However, scaling this technique to surface patches has proven to be a non-trivial endeavor. While a suitable scheme exists for rectangular patches in the form of tensor product B-splines, techniques involving the triangular domain are much less spectacular. The current cutting edge in triangular B-splines [2] is the DMS-spline. While the resulting surfaces possess high degrees of continuity, the control scheme is awkward and the evaluation is computationally expensive. A more fundamental problem is the construction bears little resemblance to the construction used for the B-Spline. This deficiency leads to the central idea of the thesis; what happens if the simple blending functions found at the heart of the B-Spline construction are used over higher dimension domains? In this thesis I develop a geometric generalization of B-Spline curves over the triangular domain. This construction mimics the control point blending that occurs with uniform B-Splines. The construction preserves the simple control scheme and evaluation of B-Splines, without the immense computational requirements of DMS-splines. The result is a new patch control scheme, the G-Patch, possessing <i>C</i>0 continuity between adjacent patches.

Page generated in 0.0563 seconds