1 |
A Geometric B-Spline Over the Triangular DomainIngram, Christopher January 2003 (has links)
For modelling curves, B-splines [3] are among the most versatile control schemes. However, scaling this technique to surface patches has proven to be a non-trivial endeavor. While a suitable scheme exists for rectangular patches in the form of tensor product B-splines, techniques involving the triangular domain are much less spectacular.
The current cutting edge in triangular B-splines [2] is the DMS-spline. While the resulting surfaces possess high degrees of continuity, the control scheme is awkward and the evaluation is computationally expensive. A more fundamental problem is the construction bears little resemblance to the construction used for the B-Spline. This deficiency leads to the central idea of the thesis; what happens if the simple blending functions found at the heart of the B-Spline construction are used over higher dimension domains?
In this thesis I develop a geometric generalization of B-Spline curves over the triangular domain. This construction mimics the control point blending that occurs with uniform B-Splines. The construction preserves the simple control scheme and evaluation of B-Splines, without the immense computational requirements of DMS-splines. The result is a new patch control scheme, the G-Patch, possessing <i>C</i>0 continuity between adjacent patches.
|
2 |
A Geometric B-Spline Over the Triangular DomainIngram, Christopher January 2003 (has links)
For modelling curves, B-splines [3] are among the most versatile control schemes. However, scaling this technique to surface patches has proven to be a non-trivial endeavor. While a suitable scheme exists for rectangular patches in the form of tensor product B-splines, techniques involving the triangular domain are much less spectacular.
The current cutting edge in triangular B-splines [2] is the DMS-spline. While the resulting surfaces possess high degrees of continuity, the control scheme is awkward and the evaluation is computationally expensive. A more fundamental problem is the construction bears little resemblance to the construction used for the B-Spline. This deficiency leads to the central idea of the thesis; what happens if the simple blending functions found at the heart of the B-Spline construction are used over higher dimension domains?
In this thesis I develop a geometric generalization of B-Spline curves over the triangular domain. This construction mimics the control point blending that occurs with uniform B-Splines. The construction preserves the simple control scheme and evaluation of B-Splines, without the immense computational requirements of DMS-splines. The result is a new patch control scheme, the G-Patch, possessing <i>C</i>0 continuity between adjacent patches.
|
Page generated in 0.0572 seconds