• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aerobic Training Attenuates Skeletal Muscle Anaplerosis During Exercise in Humans

Howarth, Krista R. 06 1900 (has links)
We hypothesized that the exercise-induced increase in muscle tricarboxylic acid (TCA) cycle intermediates (TCAI) would be lower after aerobic training (TR), due to a better match between pyruvate production and subsequent oxidation and lower flux through the alanine aminotransferase (AAT) reaction. Eight men [22 ± 1 y; maximal aerobic capacity (V02max) = 3.9 ± 0.2 L/min] cycled at 75% of their pre-TR V02max to exhaustion (Exh), before and after 7 wk ofTR (1 hr/d, 5 d/wk). Muscle biopsies (v. lateralis) were obtained at rest, 5 min of exercise and Exh. The effect ofTR was evidenced by an increased time to fatigue (91 ± 6 vs 42 ± 6 min), increases in resting [glycogen] and citrate synthase maximal activity, and decreases in glycogen degradation, lactate accumulation and phosphocreatine utilization during exercise. The sum of 4 measured TCAI was similar between trials at rest, but lower after 5 min of exercise post- TR (2. 7 ± 0.2 vs 4.3 ± 0.2 mmol.kg-1 dw, P<0.05). Importantly, the [TCAI] at Exh post- TR (2.9 ± 0.2 mmol.kg-1 dw) was not different compared to 5 min of exercise and thus fatigue was not attributable to a decline in TCAI. The net change in glutamate (Post: 4.5 ± 0.7 vs Pre: 7.7 ± 0.6 mmol.kg-1 dw) and alanine (Post: 3.3 ± 0.2 vs Pre: 5.6 ± 0.3 mmol.kg-1 dw) from Rest-5 min of exercise was attenuated post-TR (P<0.05), which is consistent with lower flux through the AA T reaction. We conclude that changes in muscle TCAI during exercise are not causally related to aerobic energy provision. / Thesis / Master of Science (MSc)

Page generated in 0.5161 seconds