1 |
Breakpoint Chlorination as an Alternate means for Ammoia-Nitrogen removal at a Water Reclamation PlantBrooks, Matthew A. 28 April 1999 (has links)
Numerous wastewater treatment processes are currently available for nitrogen removal or ammonia conversion to nitrate. Those that are economically feasible rely mostly on microbiological processes, which are only effective when the microorganisms remain in a healthy state. If a biological process upset was to occur, due to a toxic shock load or cold weather, it may result in a discharge of ammonia or total nitrogen into the receiving water body. The impact of such a discharge could have deleterious effects on aquatic life or human health. The main objective of the breakpoint pilot study was to define optimum breakpoint pilot plant operating conditions which could then be applied to the design of a full scale breakpoint facility and serve as an emergency backup to biological nitrification.
A pilot study was built on site at the Upper Occoquan Sewage Authority's Regional Water Reclamation Facility in Centreville Virginia. Testing was conducted in two phases (I and II) over a two year period in order to determine the operating conditions at which the breakpoint reaction performed best. Tests were performed during Phase I to determine the optimum operating pH, Cl₂:NH₃-N dose ratio, S0₂:Cl₂ dose ratio, and the minimum detention time for completion of the breakpoint reaction. Other testing done during Phase I included several special studies; including examination of appropriate analytical methods for monitoring breakpoint reactions, and investigation of the breakpoint reaction by-product nitrogen trichloride. Phase II testing examined how varying breakpoint operating temperatures, varying influent ammonia concentrations, higher influent organic nitrogen concentrations, and higher influent nitrite concentrations influenced the performance of the breakpoint pilot operation.
Averages of data from operation at three different rapid mix pHs (7.0, 7.5, and 8.0) showed that pilot performance (i.e., ammonia oxidation) improved and the reaction was more stable at the higher operating pHs 7.5 and 8.0. Examination of dose ratios used during the study showed that the ideal operating ratios for this particular water was around 8:1 Cl₂:NH₃-N for the breakpoint reaction and 1.3:1 S0₂:Cl₂ for the dechlorination reaction. Although detention times for completion of the breakpoint reaction varied with pilot influent temperature, it generally required around 30-35 minutes to reach ammonia concentrations of < 0.2 mg/L NH₃-N at 8-12°C. Completion of the breakpoint reaction was found to be quickest at 20°C (the highest water temperature tested at the pilot).
The tests of varying influent ammonia concentrations showed that although higher influent ammonia concentrations (11.0 mg/L) resulted in faster ammonia oxidation rates initially, the pilot operated better and had the same final performance results when the influent ammonia was lowered.
Increasing the organic nitrogen concentrations (~ 1.0 mg/L) in the pilot influent resulted in a slightly higher Cl₂:NH₃-N dose ratio needed to reach breakpoint, a higher S0₂:Cl₂ dose needed to dechlorinate, and resulted in the formation of numerous disinfection byproducts. Increasing the nitrite concentration in the pilot influent increased the chlorination dose requirement. / Master of Science
|
2 |
Methodology and natural product synthesis: carbocycles, culpin and sorbicillactone ASunasee, Rajesh 11 1900 (has links)
The first chapter of this thesis describes the development of a general
method for indirectly effecting radical carbocyclization of an alkyl chain onto an aromatic ring. This process involves a Birch reductive alkylation of aromatic tert-butyl esters, chromium(VI)-mediated oxidation and radical cyclization. The cyclized products are easily aromatized by Saegusa oxidation and treatment with bismuth trichloride. This method forms five- and six-membered benzo-fused carbocycles. Modification allows both formation of non-phenolic products, and the introduction of an additional substituent on the original aromatic ring. The second chapter describes a method for converting tert-butyl benzoates or tert-butyl 1-naphthoates into derivatives having a substituted alkyl group in a 1,4-relationship to an alkyl, aryl, alkenyl or alkynyl group. Key steps in the process involve addition of an organometallic species to a cross-conjugated cyclohexadienone followed by treatment with bismuth trichloride, which results in spontaneous decarboxylative aromatization. The method was successfully applied to the synthesis of the antimicrobial fungal metabolite culpin. The last chapter of this thesis describes synthetic studies towards the marine antileukemic alkaloid, sorbicillactone A. Studies towards the core structure of sorbicillactone A have resulted in a new method of desymmetrization
of cross-conjugated cyclohexadienones. The key step involves a highly
diastereoselective iodoetherification and radical cyclization, which affords a
product that can be elaborated into a -lactone.
|
3 |
Methodology and natural product synthesis: carbocycles, culpin and sorbicillactone ASunasee, Rajesh Unknown Date
No description available.
|
4 |
Instrumentation development for studies of magnetic and structural properties of molecular magnetsTancharakorn, Somchai January 2008 (has links)
Tetramethyl ammonium manganese trichloride ([CH3)4N][Mn(II)Cl3]) known as TMMC, has been one of the most interesting systems in experimental magnetism due to its highly one-dimensional magnetic Heisenberg behaviour. The focus of this research programme was to study its magnetic and structural properties as a function of pressure. TMMC crystals were prepared by slow evaporation technique at room temperature; however it quickly became apparent that the material is only weakly magnetic and requires a pressure cell with a very low background. This discovery lead to the programme of instrumentation development for studies of weakly magnetic materials and gave a dualistic nature to the project. The first pressure cell developed was a piston-cylinder type cell for magnetic susceptibility measurements in a Magnetic Properties Measurement System (MPMS®) based on Superconducting Quantum Interference Device (SQUID) technology from Quantum Design, USA. It has been carefully designed in order to reduce the magnetic background. One way in which this has been achieved was through making the pressure cell symmetric with respect to the sample in order to provide an integrable response in the SQUID magnetometer. The cell was made of beryllium copper alloy which has a low background even at low temperature. The use of a multi-layered cylinder with the interference fit method has resulted in the increased strength of the cell and allowed larger sample volume. The use of Lamé equation and finite element method to calculate the change of the cell diameter or cell length as a function of internal pressure enables us to eradicate the need of superconductive manometer. The cell has been successfully tested up to a maximum pressure of 10 kbar. Further development of the cell has resulted in development of an electrical plug for in situ pressure measurement inside the pressure cell. This has been achieved by means of a manganin pressure sensor calibrated to provide pressure reading at any given temperature. For structural studies, a diamond anvil cell (DAC) was designed to conduct singlecrystal X-ray diffraction measurements at low temperature. The design was based on the well-known Merrill-Bassett DAC and on the design of the miniature DAC which has been developed for use within He-3 system in the Physical Properties Measurement System (PPMS®), Quantum Design. The cell has been tested down to liquid nitrogen temperatures with a cryostream cooling system and has shown a significant improvement compared to the standard pressure cells. The frost formation on the surface of the cell has slowed down significantly compared to the tests on the Merrill-Bassett cell, which led to a better quality diffraction pattern from the sample inside the cell. This result has been achieved due to the high thermal conductivity of the materials used in the construction and the minimisation of the DAC, which was effectively built around the Boehler-Almax diamond anvils. With the help of some of the high-pressure instruments mentioned above, highpressure properties of TMMC have been studied in this project. The structuremagnetism relationship was established from the results of magnetic and structural measurements under pressure. The magnetic susceptibility data helped to establish the change of the intrachain antiferromagnetic coupling constant as a function of pressure, while X-ray structures of TMMC were refined from ambient pressure to 17 kbar using a synchrotron X-ray diffraction technique. The structure of TMMC at room temperature was confirmed to be hexagonal. However, indirect evidence of the hexagonal-monoclinic structural phase transition was observed at above 17 kbar and room temperature. The combination of the magnetic and structural data has helped to establish that the interaction between high spin d5 metal orbitals (Mn(II)) in facesharing octahedral has a contribution from both direct exchange and superexchange interactions. The power-law relationship developed by Bloch was also observed in this system.
|
5 |
Characterization and modeling of dry etch processes for titanium nitride and titanium films in Cl₂/N₂ and BCl₃ plasmasMuthukrishnan, N. Moorthy 06 June 2008 (has links)
In the past few years, the demands for high speed semiconductor integrated circuits have warranted new techniques in their fabrication process which will meet the ever-shrinking dimensions. The gaseous plasma assisted etching is one of these revolutionary processes. However, the plasma and the etch process are very complex in nature. It has been very difficult to understand various species present in the plasma and their role in the etch reaction. In addition, the submicron geometries also require interconnect materials which will satisfy the necessary properties such as thermal stability and low electrical resistance. Titanium (Ti) and titanium nitride (TiN) are widely used as barriers between aluminum (Al) and silicon (Si) to prevent the destructive intermixing of these two materials. The process of patterning of the interconnect containing Ti and TiN along with Al has been a challenge to the semiconductor process engineers. Therefore, complete characterization of the plasma etch process of Ti and TiN films and development of mathematical models to represent the responses such as the etch rate and uniformity is necessary for a good understanding of the etching process. A robust and well controlled metal etch process usually results in good die yield per wafer and hence can translate into higher profits for the semiconductor manufacturer.
The objective of this dissertation is to characterize the plasma etch processes of Ti and TiN films in chlorine containing plasmas such as BCl₃ and Cl₂/N₂ and to develop mathematical models for the etch processes using statistical experimental design and analysis technique known as Response Surface Methodology (RSM). In this work, classical experiments are conducted on the plasma etch process of Ti and TiN films by varying the process parameters, such as gas flow, radio frequency (RF) power, reaction pressure, and temperature, one parameter at a time, while maintaining the other parameters constant. The variation in the etch rate with the change in the process parameter of the film is studied and the results were explained in terms of the concepts of plasma. These experiments, while providing very good understanding of the main effects of the parameters, yield little or no information on the higher order effects or interaction between the process parameters. Therefore, modern experimental design and analysis techniques using computerized statistical methods need to be employed for developing mathematical models for these complex plasma etch processes.
The second part of this dissertation concentrates on the Design and Analysis of Experiments using Response Surface Methodology (RSM) and development of models for the etch rate and the etch uniformity of the Ti and TiN films in chlorine-containing plasmas such as Cl₂/N₂ and Cl₂/N₂/BCl₃. A complete characterization of the plasma etch process of Ti and TiN films is achieved with the RSM technique and a well fitting and statistically significant models have been developed for the process responses, such as the etch rate and the etch uniformity. These models also provide a means for quantitative comparison of main effects, which are also known as first order effects, second order effects and two factor interactions. The models, thus developed, can be effectively used for an etch process optimization, prediction of the responses without actually conducting the experiments, and the determination of process window.
This dissertation work has achieved a finite study of the plasma etch process of Ti and TiN films. There is tremendous potential and scope for further research in this area, limited only by the available resources for wafer processing. A few of the possibilities for further research is discussed in the next few sentences. The optimized process derived from the RSM technique needs to be implemented in the actual production process of the semiconductor ICs and its effects on the wafer topography, etch residue and the resulting die yield have to be studied. More research studies are needed to examine the effect of process parameters such as temperature, the size and shape of the etch chamber, the quality of the film being etched, among other parameters. It is worth emphasizing in this respect that this dissertation marks beginning of research work into the ever-increasing complexities of gas plasma. / Ph. D.
|
6 |
Facile Synthesis of Anhydrous Rare-Earth Trichlorides from their Oxides in Chloridoaluminate Ionic LiquidsShah, Sameera, Pietsch, Tobias, Ruck, Michael 14 August 2024 (has links)
Wide applications of anhydrous rare-earth (RE) trichlorides RECl₃ in organometallic chemistry, for the synthesis of optical and magnetic materials, and as catalysts require a facile approach for their synthesis. The known methods use or produce toxic substances, are complicated and have limited reliability and upscaling. It has been shown that task-specific ionic liquids (ILs) can dissolve many metal oxides without special reaction conditions at moderate temperature, making the metals accessible to downstream chemistry. Using imidazolium chloridoaluminate ILs, pure crystalline anhydrous RECl₃ (RE=La−Nd, Sm−Dy) can be synthesized in one step from RE oxides in high yield. The Lewis acidic IL acts as solvent and reaction partner. The by-product [Al₄O₂Cl₁₀]²⁻, which was detected spectroscopically, remains in solution. The reacted IL can be removed quantitatively by washing. ILs with various imidazolium cations and AlCl₃ content and the effect of temperature and reaction time were tested.
|
7 |
Multi-capteurs chimiques de chloramines et de chloroforme à transduction optique. Application à la surveillance de la qualité de l’air dans les piscines / Multi-chemical sensor for the optical detection of chloramines and chloroform. Application for monitoring the air quality in poolsNguyen, Trung Hieu 04 February 2014 (has links)
Le chlore est largement utilisé pour ses propriétés bactéricides dans les piscines. Dans les eaux de piscine, le chlore réagit avec les matières azotées et carbonées générées par l’activité humaine (sueur, salive, urine, peau) pour former divers composés toxiques tels que la monochloramine (NH2Cl), la dichloramine (NHCl2), le trichlorure d'azote (NCl3), le chloroforme (CHCl3), etc… qui se retrouvent dans l’atmosphère. La détection et la quantification de ces composés volatils à des teneurs ppb (partie par milliard) est un réel besoin afin de contrôler la qualité de l’air des piscines. Cependant il n’existe pas à ce jour des appareils à la fois sensibles et peu coûteux.L’objectif de ce travail de thèse est d’élaborer des capteurs chimiques colorimétriques, sensibles, sélectifs et peu coûteux de la monochloramine, du trichlorure d’azote et du chloroforme. Dans ce but, nous avons mis au point des capteurs chimiques réalisés à partir de matrices nanoporeuses de silicate dopée des réactifs. Ainsi le capteur de NCl3 dopé de NaI et d’amylose permet de mesurer de faibles teneurs de NCl3 (5 ppb à 180 ppb) dans les atmosphères humides (50-80% HR) des piscines. Grâce au changement rapide de couleur, de transparent à rose-violet, visible à l’œil nu, le capteur de NCl3 permet de surveiller la qualité de l’air dans les piscines. Le capteur sélectif de NH2Cl est basé sur la réaction de Berthelot. La matrice de silicate nanoporeuse dopée de nitroprussiate de sodium et de phénol en milieu alcalin, initialement transparente, devient bleue lors d’une exposition à NH2Cl gazeux. Ce capteur permet de détecter NH2Cl dans la gamme de 60 à 250 ppb dans une atmosphère très humide (≈ 80%). Utilisé pour la sonder la qualité des eaux de piscine, il permet de mesurer NH2Cl dans l’eau avec une limite de détection de 0,1 µmol•L-1. Une étude préliminaire de la détection de CHCl3 a également été entreprise pour déterminer les molécules-sonde aptes à réagir avec le chloroforme en formant des produits colorés. Les réactifs de la réaction de Fujiwara ont été sélectionnés. L’étude de la réactivité de la 2,2’-bipyridine en solution en présence d’une base forte a permis de mettre en évidence la formation simultanée de deux composés colorés, dont la formation dépend de la nature de l’environnement réactionnel. / In swimming-pools, chlorine is used as a disinfectant to minimize the risk to users from microbial contaminants. In water, chlorine reacts with nitrogen compounds generated by human activity like saliva, sweat, urine and skin, leading to the formation of toxic compounds, such as monochloramine (NH2Cl), dichloramine (NHCl2), nitrogen trichloride (NCl3), chloroform (CHCl3), etc… The detection and the quantification of these volatile compounds at ppb level (part per billion) is an important and significant challenge to be able to monitor the air quality in swimming pool. Or, there is currently no commercially available and low-cost system which can instantaneously measure at ppb concentrations.The aim of this research is to develop a cheap, sensitive and selective chemical and colorimetric sensors of monochloramine, nitrogen trichloride and chloroform. For this purpose, we developed chemical sensors based on the use of nanoporous silicate matrices doped with probe-molecules. The NCl3 sensor doped with NaI and amylose can detect NCl3 at ppb level (5 ppb – 180 ppb) in humid atmospheres (from 50% to 80% relative humidity) at ambient pool temperatures. Due to the fast change of color, visible with naked eyes, these sensors can be used to detect peaks of pollution and to monitor the air quality of indoor pools. The NH2Cl selective sensor is based on the Berthelot reaction. The nanoporous silicate matrices doped with sodium nitroprusside and phenol in an alkaline medium, turn from transparent to blue upon exposure to gaseous NH2Cl. This sensor can detect NH2Cl in the range from 60 to 250 ppb in a very humid atmosphere (≈ 80%). Used to probe the quality of pool water, this sensor can detect NH2Cl in water with a detection limit of 0,1 µmol•L-1. A preliminary study of the CHCl3 detection was also conducted to identify probe-molecules capable of reacting with chloroform to form colored products. The reagents of the Fujiwara reaction were selected. The study of the 2,2’-bipyridine reactivity in solution in the presence of a strong base allowed highlighting the simultaneous formation of two colored compounds, whose formation depends on the nature of the reaction environment.
|
8 |
Разработка электрохимической технологии получения порошков титана : магистерская диссертация / Development of electrochemical technology for the production of titanium powdersШайхмулин, И. Г., Shayhmulin, I. G. January 2017 (has links)
The purpose of this work is to study the saturation of the sodium NaCl melt, dissolve the titanium rod, and restore TiCl2 in the electrolyte volume with a Na-NaCl melt to develop an electrochemical technology for producing titanium powders.
To substantiate the electrode processes, an attempt was made to create reference electrodes for the systems under study. According to the published data, the equations of temperature dependences of the standard, conventional-standard and redox potentials and the concentration dependence of the equilibrium potentials of titanium in molten sodium chloride, which were used in the analysis of polarization curves, were calculated.
The kinetics of electrode processes in a sodium chloride melt is studied when metallic titanium is dissolved in it and when sodium is deposited on the iron cathode. An explanation of the processes occurring at the electrodes is given. Powders of metallic titanium are obtained. / Целью данной работы является исследование насыщения расплава NaCl натрием, растворение титанового стержня и восстановление TiCl2 в объеме электролита расплавом Na-NaCl для разработки электрохимической технологии получения порошков титана.
Для обоснования электродных процессов, предпринята попытка созданы электроды сравнения для изучаемых систем. По литературным данным рассчитаны уравнения температурных зависимостей стандартного, условно-стандартного и окислительно-восстановительных потенциалов и концентрационной зависимости равновесных потенциалов титана в расплавленном хлориде натрия, которые использовались при анализе поляризационных кривых.
Изучена кинетика электродных процессов в расплаве хлорида натрия при растворении в нем металлического титана и при осаждении натрия на железном катоде. Дано объяснение происходящих на электродах процессов. Получены порошки металлического титана.
|
Page generated in 0.0636 seconds