• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biochemical characterization of 2,4,6-trichlorophenol degradation in bacterium Cupriavidus necator JMP134

Belchik, Sara Mae. January 2009 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, May 2009. / Title from PDF title page (viewed on June 4, 2009). "School of Molecular Biosciences." Includes bibliographical references.
2

Intimate Coupled Photocatalysis and Biodegradation on a Novel TiO2-Coated Biofilm Carrier

January 2011 (has links)
abstract: Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate biomass in its interior (protected from UV light and free radicals). First, this carrier was tested for ICPB in a continuous-flow photocatalytic circulating-bed biofilm reactor (PCBBR) to mineralize biorecalcitrant organic: 2,4,5-trichlorophenol (TCP). Four mechanisms possibly acting of ICPB were tested separately: TCP adsorption, UV photolysis/photocatalysis, and biodegradation. The carrier exhibited strong TCP adsorption, while photolysis was negligible. Photocatalysis produced TCP-degradation products that could be mineralized and the strong adsorption of TCP to the carrier enhanced biodegradation by relieving toxicity. Validating the ICPB concept, biofilm was protected inside the carriers from UV light and free radicals. ICPB significantly lowered the diversity of the bacterial community, but five genera known to biodegrade chlorinated phenols were markedly enriched. Secondly, decolorization and mineralization of reactive dyes by ICPB were investigated on a refined Ti2-coated biofilm carrier in a PCBBR. Two typical reactive dyes: Reactive Black 5 (RB5) and Reactive Yellow 86 (RY86), showed similar first-order kinetics when being photocatalytically decolorized at low pH (~4-5), which was inhibited at neutral pH in the presence of phosphate or carbonate buffer, presumably due to electrostatic repulsion from negatively charged surface sites on Ti2, radical scavenging by phosphate or carbonate, or both. In the PCBBR, photocatalysis alone with Ti2-coated carriers could remove RB5 and COD by 97% and 47%, respectively. Addition of biofilm inside macroporous carriers maintained a similar RB5 removal efficiency, but COD removal increased to 65%, which is evidence of ICPB despite the low pH. A proposed ICPB pathway for RB5 suggests that a major intermediate, a naphthol derivative, was responsible for most of the residual COD. Finally, three low-temperature sintering methods, called O, D and DN, were compared based on photocatalytic efficiency and Ti2 adherence. The DN method had the best Ti2-coating properties and was a successful carrier for ICPB of RB5 in a PCBBR. / Dissertation/Thesis / M.S. Biological Design 2011
3

Properties, functionality and potential applications of novel modified iron nanoparticles for the treatment of 2,4,6-trichlorophenol

Underwood, Laura Ann January 2018 (has links)
2,4,6-trichlorophenol (TCP) is a pervasive carcinogenic water contaminant found in a wide variety of water and waste systems and is a pertinent model compound of broader aromatic organics, specifically organo-halide pesticides. These compounds are persistent in the environment and show resilience to regular water and waste treatment protocols thus warranting the development and implementation of novel treatment materials for improved contaminant removal. Zero-valent iron (ZVI) has demonstrated the ability to remove or degrade a wide variety of inorganic and organic water contaminants, including chlorophenols, and has been widely applied for in-situ groundwater remediation where contamination is often localised in a low-oxygen environment. ZVI's broader applications in water treatment have remained mainly limited due to corrosion, particle dispersion, and confinement issues in deployment. This work, therefore, explored the development, functionality, and potential application of new modified nZVI materials (nZVI-Osorb) and assessed their potential to improve iron's intrinsic functionality while also gauging the material's viability for TCP remediation in water and waste systems. Materials produced in this thesis were prepared utilising three different embedment procedures (1-pot, multiple additions, oxygen-free). All embedment methods resulted in tightly bound composites featuring high surface areas (340.2-449.1 sq. m/g) with net iron composition ranging from 10% to 29.78% by mass. Electron imaging microscopy verified even dispersion of iron throughout the substrate. Composite materials did not exhibit a delayed rate of atmospheric corrosion over nZVI controls evincing an 18% nZVI0 loss per day until reaching a stabilised concentration (7%) after 48 hrs. nZVI-Osorb composites did produce more favourable iron oxide species which remain conducive to electron transfer from core Fe0 atom. After 50 days, a majority of nZVI in nZVI-Osorb had oxidised to maghemite (30%) and magnetite (26%) compared to control nZVI producing 19% and 12% respectively. Unreactive hematite accounted for 47% of the control and just 36% of the composite. While 1-pot embedment allowed the most substantial control over final iron composition, the oxygen-free method allowed the most reliable preservation of initial nZVI0 concentrations through restricted oxidation. Materials generated through oxygen-free embedment were utilised in the following water treatment trials with TCP. Parameters related to sorption and degradation mechanisms of TCP by nZVI-Osorb were tested in aerobic conditions, e.g. surface and potable water. nZVI-Osorb materials demonstrated high extraction capacity for TCP from aqueous solutions (Qe=1286.4 ± 13.5 mg TCP/g Osorb, Qe=1253 ± 106.7 mg TCP/g nZVI-Osorb, pH 5.1, 120mg/L TCP) and followed pseudo second order kinetics. In the broader class of chlorophenols, sorptive affinity mirrored partitioning values with highly substituted chlorophenols displaying the highest sorption capacities. Degradation of TCP by nZVI-Osorb or nZVI controls was not observed due to corrosive hindrance and inadequate reductive capacity, suggesting that materials may not be suitable for highly aerated surface and potable water treatment systems. Environmental conditions pertinent to sorption and degradation mechanisms were evaluated to improve understanding and robustness of functionality in low-oxygen applications, such as wastewater and anaerobic digesters, where nZVI-Osorb treatment is anticipated to be advantageous to TCP sorption and methane production. pH was found to influence sorption dramatically. Acidic solutions below 5 found sorption > 90%. This capacity was reduced to < 30% when pH was raised above TCP pKa value (6.23) to 7 and above. Further trials found a positive effect on TCP sorption (+7.55%) linked to net pH reduction (5.1 to 3.3) with the addition of secondary acids (volatile fatty acids: acetic, propionic, butyric, 3x 100mg/L) commonly found in anaerobic digester systems. Salinity did not affect TCP sorption. The removal of dissolved and atmospheric oxygen increased total sorption (40ppm-+1.94%, 100ppm- +7.93%, 200ppm- +0.89%, 400mg/L- +14.59%) through reduced iron corrosion and the production of favorable iron oxides, but did not facilitate contaminant degradation. Biodegradation mechanisms for TCP have broadly been established, and new research has supported the improved cometabolic degradation of recalcitrant contaminants like TCP and PCP in nZVI-dosed anaerobic digesters. Model anaerobic digester systems (3.9 g/L nZVI-Osorb, 25mg/L TCP, 240 mg/L acetic, 120mg/L propionic, 120mg/L butyric acid) containing bioreactor sludge (62.5%) were observed through standard water quality diagnostics (pH, ORP, COD, head pressure) for 14 days and suggested that nZVI-Osorb did not inhibit cellular processes. Increased electron activity from iron corrosion and hydrogen gas production, increased overall pH and decreased total ORP in these AD systems. TCP degradation by-products (DCP, CP) were detected in dilute concentrations (< 0.01 mg/L) with poor recovery by LC-MS/MS. Results suggest that nZVIOsorb may be well-suited additive for AD systems. This study contributes to knowledge of the properties, functionality, and treatment mechanisms of metal-sorbent composites with a model chlorinated aromatic water contaminant in aerobic and anaerobic environments. The work identifies favourable environmental and process conditions to apply these materials in larger scale applications, particularly, anaerobic digestion and provides support for the continued refinement and improvement of nZVI based remediation systems.
4

Removal of selected chlorinated phenolic compounds from water sources in Vaal Triangle using HPLC, Macadamia nutshell activated carbon and solid phase extraction

Machedi, Sechaba 12 1900 (has links)
M. Tech (Department of Chemistry, Faculty of Applied and Computer Sciences) Vaal University of Technology. / In this study, analytical method for determining the chlorinated phenols in water was developed using High Performance Liquid Chromatography. The following four compounds which are 2, 4, 6- Trichlorophenol (2, 4, 6 TCP), 3-chlorophenol (3CP), 2, 4- Dichlorophenol (2, 4 DCP) and 4-chloro-3-methylphenol (4C3MP) were identified and quantified with a High Performance Liquid Chromatography (HPLC). The validation parameters tested were,: linearity, trueness, precision, detection limit of quantitation, sensitivity, specificity, selectivity. The linear calibration ranges of five standard solution from 1-10 ppm. The linearity ranges between 0.9298-0.9813. The activated carbon based on the waste macadamia nutshell activated carbon (MAC) was investigated for its potential uses as an adsorbent for chlorinated phenols removal and compared with grafted macadamia nutshell activated carbon (GMAC). The adsorbent was characterized with Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). The parameters such as pH, temperature, contact time, concentration and adsorbent were investigated by adsorption technique. The strata C18E has been used before for the same reason and therefore the research was based on mimic the functional group of solid phase extraction (SPE) into macadamia activated carbon (MAC). The functional groups in SPE C18E are benzene and octadecyl. MAC was grafted with strata C18E functional groups to compare its potential with the SPE. The pseudo-first-order and pseudo-second-order kinetic models were applied to verify the experimental data. The pseudo-second order exhibited the best fit for the kinetic studies for MAC adsorption. Chemical removal of chlorinated phenols from wastewater is necessary to reduce harmful products on the environment and human health. Chlorinated phenols have been previously listed as some of the highest priority contaminants and as well as mainly important capability carcinogenic toxins released from chemical plants. Their availability in water supplies was perceived by their bad taste and smell. The acceptable chlorinated phenols concentration in portable water is 1 (mg/l) base on the approval of world health organization. The permanent checking of chlorinated phenols in environmental samples has a greater significance and stresses highly effectiveness, common selectively and great sensitively methods. The maximum uptake of Phenol using weighed mass of MAC was found to be 78 % and for GMAC was 84% for both 2,4,6TCP. t=250 min, pH=5, Co=1mg/l, T = 25 oC and m = 0.3 g/l were the optimum condition for Phenol-MAC system and GMAC system. Over all analysis of equilibrium model analysis indicates the fitness of Langmuir isotherm model to Phenol MAC adsorption system, suggesting a monolayer adsorption of phenol on the surface of MAC. Phenol adsorption capacity of MAC was found to be decreasing with increase in temperature suggesting that the adsorption process was exothermic in nature, which was further supported by the negative values of change in enthalpy. Characterization of MAC and GMAC confirmed the mesoporous texture, highly carbonaceous nature and a higher effective surface area of 912 m2/g. The highest phenol uptake capacity of GMAC was found to be 8.0049 mg/g. The optimal conditions for various process parameters are t = 250 min, pH=5, Co=1mg/l, T = 25 oC and m = 0.3 g/l were the optimum condition for Phenol-GMAC system. Like Phenol-MAC system, the kinetics studies confirmed that Phenol-GMAC adsorption system can be described by pseudo- second-order kinetics model. Equilibrium model analysis indicates the fitness of Langmuir isotherm model to Phenol-MAC adsorption system, suggesting a monolayer adsorption of phenol on the surface of GMAC. Phenol adsorption capacity of GMAC was found to be decreasing with increase in temperature suggesting that the adsorption process was exothermic in nature, which was further supported by the negative values of change in enthalpy. The negative values of Gibb’s free energy suggested that adsorption of phenol onto GMAC was a spontaneous process.

Page generated in 0.0411 seconds