• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Vulcan game of Kal-toh: Finding or making triconnected planar subgraphs

Anderson, Terry David 21 April 2011 (has links)
In the game of Kal-toh depicted in the television series Star Trek: Voyager, players attempt to create polyhedra by adding to a jumbled collection of metal rods. Inspired by this fictional game, we formulate graph-theoretical questions about polyhedral (triconnected and planar) subgraphs in an on-line environment. The problem of determining the existence of a polyhedral subgraph within a graph G is shown to be NP-hard, and we also give some non-trivial upper bounds for the problem of determining the minimum number of edge additions necessary to guarantee the existence of a polyhedral subgraph in G. A two-player formulation of Kal-toh is also explored, in which the first player to form a target subgraph is declared the winner. We show a polynomial-time solution for simple cases of this game but conjecture that the general problem is NP-hard.
2

The Vulcan game of Kal-toh: Finding or making triconnected planar subgraphs

Anderson, Terry David 21 April 2011 (has links)
In the game of Kal-toh depicted in the television series Star Trek: Voyager, players attempt to create polyhedra by adding to a jumbled collection of metal rods. Inspired by this fictional game, we formulate graph-theoretical questions about polyhedral (triconnected and planar) subgraphs in an on-line environment. The problem of determining the existence of a polyhedral subgraph within a graph G is shown to be NP-hard, and we also give some non-trivial upper bounds for the problem of determining the minimum number of edge additions necessary to guarantee the existence of a polyhedral subgraph in G. A two-player formulation of Kal-toh is also explored, in which the first player to form a target subgraph is declared the winner. We show a polynomial-time solution for simple cases of this game but conjecture that the general problem is NP-hard.

Page generated in 0.069 seconds