• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Espaces de fonctions sur les tores quantiques / Function spaces on quantum lori

Xiong, Xiao 02 July 2015 (has links)
Cette thèse donne une étude systématique des espaces de Sobolev, Besov et Triebel-Lizorkin sur le tore quantique. Ces espaces partagent beaucoup de propènes avec leurs analogues classiques. Nous prouvons le théorème de réduction pour tous ces espaces et une inégalité de Poincaré pour les espaces de Sobolev. Nous démontrons les inégalités de plongement pour eux, incluant le plongement d'espaces de Besov et d'espaces de Sobolev. Nous obtenons une caractérisation générale à la Littlewood-Paley pour les espaces de l3esov et Triebel-Lizorkin, qui implique des caractérisations concrètes par les semigroupes de Poisson et de chaleur ainsi par des différences. Certains d'entre elles sont nouvelles, même dans le cas commutatif; par exemple, celle d'espaces de Besov et Triebel-Lizorkin par le semigroupe de Poisson améliore le résultat classique. En conséquence de la caractérisation d'espaces de Besov par des différences, nous étendons les récents résultats de Bourgain-Brézis -Mironescu et Maz'ya-Shaposhnikova sur les limites de normes de Besov au cadre quantique. Nous étudions aussi l'interpolation de ces espaces, et en particulier, déterminons explicitement le K-fonctionnel du couple de l'espace Lp et l'espace de Sobolev, ce qui est l'analogue quantique du résultat classique de Johnen et Scherer. Enfin, nous montrons que les multiplicateurs de Fourier complètement bornés sur tous ces espaces coïncident avec ceux sur les espaces correspondants sur le tore usuel. Nous prouvons également que les multiplicateurs de Fourier sur les espaces de Besov sont complètement déterminés par ceux sur les sous-espaces Lp associés à leurs composantes dans la décomposition de Littlewood-Paley. / This thesis gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative d-torus. We prove, arnong other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces. We establish the embedding inequalities of all these spaces, including the l3esov and Sobolev embedding theorems. We obtain Littlewood-Paley type characterizations for Besov and 'friebel-Lizorki spaces in a general way, as well as the concrete ones internas of the Poisson, heat semigroups and differences. Some of them are new even in the commutative case, for instance, oui Poisson semigroup characterization of Besov and Triebel-Lizorkin spaces improves the classical ones. As a consequence of the characterization of the Besov spaces by differences, we extend to the quantum setting the recent results of Bourgain-Brézis -Mironescu and Maz'ya-Shaposhnikova on the limits of l3esov florins. We investigate the interpolation of all these spaces, in particular, deterrnine explicitly the K-functional of the couple of Lp space and Sobolev space, winch is the quantum analogue of a classical result due to Johnen and Scherer Finally, we show that the completely bounded Fourier multipliers on all these spaces coincide with those on the corresponding spaces on the usuel d-torus. We also give a quite simple description of (completely) bounded Fourier multipliers on the Besov spaces in ternis of their behavior on the Lp-components in the Littlevvood-Paley decomposition.
2

Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels / Function spaces on quantum tori and their applications to pseudo-differential operators.

Xia, Runlian 10 October 2017 (has links)
Le but de cette thèse est d’étudier l’analyse sur les espaces hpc(Rd,M), la version locale des espaces de Hardy à valeurs opératorielles construits par Tao Mei. Les espaces de Hardy locaux à valeurs opératorielles sont définis par les g-fonctions de Littlewood-Paley tronquées et les fonctions intégrables de Lusin tronquées associées au noyau de Poisson. Nous développons la théorie de Calderón-Zygmund sur hpc(Rd,M); nous étudions la dualité hpcbmocq et l’interpolation. D’après ces résultats, nous obtenons la caractérisation générale de hpc(Rd,M) en remplaçant le noyau de Poisson par des fonctions tests raisonnables. Ceci joue un rôle important dans la décomposition atomique lisse de h1c(Rd,M). En même temps, nous étudions aussi les espaces de Triebel-Lizorkin inhomogènes à valeurs opératorielles Fpα,c(Rd,M). Comme dans le cas classique, ces espaces sont connectés avec des espaces de Hardy locaux à valeurs opératorielles par les potentiels de Bessel. Grâce à l’aide de la théorie de Calderón-Zygmund, nous obtenons les caractérisations de type LittlewoodPaley et de type Lusin par des noyaux plus généraux. Ces caractérisations nous permettent d’étudier différentes propriétés de Fpα,c(Rd,M), en particulier, la décomposition atomique lisse. Ceci est une extension et une amélioration de la décomposition atomique précédente de h1c(Rd,M). Comme une application importante de cette décomposition atomique lisse, nous montrons la bornitude d’opérateurs pseudo-différentiels avec les symboles réguliers à valeurs opératorielles sur des espaces de Triebel-Lizorkin Fpα,c(Rd,M), pour α ∈ R et 1 ≤ p ≤ ∞. Finalement, grâce à la transférence, nous obtenons aussi la Fpα,c-bornitude d’opérateurs pseudo-différentiels sur les tores quantiques / This thesis is devoted to the study of the analysis on the spaces hpc(Rd,M), the local version of operator-valued Hardy spaces studied by Tao Mei. The operator-valued local Hardy spaces are defined by the truncated Littlewood-Paley g-functions and the truncated Lusin square functions associated to the Poisson kernel. We develop the Calderón-Zygmund theory on hpc(Rd,M), and study the hpc-bmocq duality and the interpolation. Based on these results, we obtain general characterization of hpc(Rd,M) which states that the Poisson kernel can be replaced by any reasonable test function. This characterization plays an important role in the smooth atomic decomposition of h1c(Rd,M). We also investigate the operator-valued inhomogeneous Triebel-Lizorkin spaces Fpα,c(Rd,M). Like in the classical case, these spaces are connected with the operator-valued local Hardy spaces via Bessel potentials. Then by the aid of the Calderón-Zygmund theory, we obtain the Littlewood-Paley type and the Lusin type characterizations of Fpα,c(Rd,M) by more general kernels. These characterizations allow us to study various properties of Fpα,c(Rd,M), in particular, the smooth atomic decomposition. This is an extension and an improvement of the previous atomic decomposition of h1c(Rd,M). As an important application of this smooth atomic decomposition, we show the boundedness of pseudo-differential operators with regular operator-valued symbols on Triebel-Lizorkin spaces Fpα,c(Rd,M), for α ∈ R and 1 ≤ p ≤ ∞. Finally, by virtue of transference, we obtain the Fpα,c-boundedness of pseudo-differential operators on quantum tori
3

2-microlocal spaces with variable integrability

Ferreira Gonçalves, Helena Daniela 15 May 2018 (has links)
In this work we study several important properties of the 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability. Due to the richness of the weight sequence used to measure smoothness, this scale of function spaces incorporates a wide range of function spaces, of which we mention the spaces with variable smoothness. Within the existing characterizations of these spaces, the characterization via smooth atoms is undoubtedly one of the most used when it comes to obtain new results in varied directions. In this work we make use of such characterization to prove several embedding results, such as Sobolev, Franke and Jawerth embeddings, and also to study traces on hyperplanes. Despite the considerable benefits of resorting on the smooth atomic decomposition, there are still some limitations when one tries to use it in order to prove some specific results, such as pointwise multipliers and diffeomorphisms assertions. The non-smooth atomic characterization proved in this work overcome these problems, due to the weaker conditions of the (non-smooth) atoms. Moreover, it also allows us to give an intrinsic characterization of the 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability on the class of regular domains, in which connected bounded Lipschitz domains are included. / In dieser Arbeit untersuchen wir einige wichtige Eigenschaften der 2-microlokalen Besov und Triebel-Lizorkin Räume mit variabler Integrabilität. Weil die Glattheit hier mit einer reicher Gewichtsfolge gemessen wird, beinhaltet diese Skala von Funktionsräumen eine große Anzahl von Funktionsräumen, von denen wir die Räume mit variabler Glattheit erwähnen. Innerhalb der vorhandenen Charakterisierungen dieser Räume ist die Charakterisierung mit glatten Atomen zweifellos eine der am häufigsten verwendeten, um neue Ergebnisse in verschiedenen Richtungen zu erhalten. In dieser Arbeit verwenden wir eine solche Charakterisierung, um mehrere Einbettungsergebnisse zu bewiesen, wie Sobolev-Einbettungen und Einbettungen vom Franke-Jawerth Typ, und auch Spurresultate zu untersuchen. Trotz der beträchtlichen Vorteile des Rückgriffs auf die glatte Atomaren-Zerlegung gibt es immer noch einige Einschränkungen, wenn man versucht, sie zu verwenden, um einige spezifische Ergebnisse zu beweisen, wie beispielsweise punktweise Multiplikatoren und Diffeomorphismen-Assertionen. Die nichtglatte atomare Charakterisierung, die wir in dieser Arbeit beweisen, überwindet diese Probleme aufgrund der schwächeren Bedingungen von (nichtglatten) Atomen. Außerdem erlaubt es uns, eine Intrinsische Charakterisierung der 2-mikrolokalen Besov- und Triebel-Lizorkin-Räume mit variabler Integrabilität auf regulärer Gebieten zu geben.

Page generated in 0.0241 seconds