• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 10
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 91
  • 65
  • 20
  • 15
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoaffinity labeling of Nak-ATPase with [¹²⁵I]-iodoazidocymarin

Lowndes, Joseph M. January 1983 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1983. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 86-87).
2

Photoaffinity labelling of the ouabain binding site of sodium-potassium-activated adenosine triphosphatase

Hall, Clifford Charles. January 1981 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1981. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 288-296).
3

Purification, reconstitution, and characterization of the ATP synthetase of Escherichia coli

Foster, David L. January 1980 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1980. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
4

Purification of the sodium-potassium transport adenosinetriphosphatase

Dulak, Norman Charles, January 1970 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
5

Caractérisation biochimique des nucléosides triphosphates diphosphohydrolases (NTPDases) et fonctions de la NTPDase1 chez le macrophage murin

Lévesque, Sébastien 17 April 2018 (has links)
Les nucleotides sont des molécules organiques essentielles à la vie qui participent à diverses fonctions des organismes vivants comprenant le stockage de l'information génétique (ADN), sa transcription (ARNm), sa traduction (ARNr, ARNt) en protéine et la régulation de cette traduction (miARN) ainsi qu'au contrôle de l'activité de certaines protéines comme les protéines kinases (ATP) et au stockage de l'énergie chimique (ATP, GTP). Les nucleotides peuvent aussi être relâchés dans le milieu extracellulaire et servir de signaux autocrines et paracrines en activant des récepteurs P2 spécifiques. Leur concentration est contrôlée par des ecto-nucléotidases qui hydrolysent les nucleotides en nucleosides. Ces enzymes peuvent ainsi influencer l'activation des récepteurs P2. Dans cette thèse, j'introduirai d'abord de façon globale la signalisation par les nucleotides, les nucleosides et les molécules qui contiennent des nucleotides (c'est-à-dire NAD, FAD, NpnN) et décris ensuite de façon plus spécifique l'importance de cette signalisation dans le processus inflammatoire. Par la suite, , je présenterai le travail que j'ai entrepris afin de mieux comprendre le rôle joué par les ecto-nucléotidases en approfondissant la caractérisation biochimique des nucleosides triphosphates diphosphohydrolases (NTPDases) et en analysant le rôle de l'une d'entre elles, la NTPDasel, dans le macrophage murin. Ensuite, je présenterai la caractérisation d'une nouvelle ecto-nucléotidase, la NTPDase8 (chapitre 2), et la comparaison des propriétés biochimiques des quatre NTPDases humaines et murines présentes au niveau de la membrane plasmique soit les NTPDasel, 2, 3 et 8 (Chapitre 3). Ces enzymes peuvent contrôler la concentration des différents agonistes des récepteurs P2 de façon fine et distincte. Au chapitre 4, je présenterai la caractérisation de l'ARL 67156, un inhibiteur potentiel de la NTPDasel. Parmi les différentes ecto-nucléotidases hydrolysant l'ATP extracellulaire, cette molécule inhibe de façon compétitive les NTPDasel et NTPDase3 ainsi que la nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1). Finalement, je montrerai que la NTPDasel est la principale ecto-nucléotidase des macrophages murins où elle contrôle l'activation du récepteur P2X₇ et les fonctions qui lui sont associées telles que la mort induite par l'ATP, l'ouverture d'un pore et la relâche d'IL-iβ et d'IL-18, deux cytokines précoces de l'inflammation.
6

Toward understanding the function of the universally conserved GTPase HflX

Fischer, Jeffrey James January 2011 (has links)
Members of the ubiquitous GTPase superfamily regulate numerous cellular functions. A core group of eight GTPases are present in all domains of life: initiation factor 2, elongation factors Tu and G, protein secretion factors Ffh and FtsY, and the poorly characterized factors YihA, YchF, and HflX. While the first five members have well defined roles in the essential cellular process of protein synthesis, a role for YihA, YchF and HflX in this process has only recently been suggested. Here, a detailed kinetic analysis examining the interaction between HflX and its cellular partners is described. 50S and 70S ribosomal particles function as GTPase activating factors for HflX by stabilizing the nucleotide binding pocket of HflX, inducing a “GTPase activated” state. These data indicates a novel mode of GTPase activation, and suggests a role for HflX in regulating translation. / xii, 185 leaves : ill. (some col.) ; 28 cm
7

Analyse de la topologie membranaire des principaux intermédiares catalytiques de la H+, K+-ATPase gastrique

Baeyens, Noreddine January 2004 (has links)
Doctorat en Sciences / info:eu-repo/semantics/nonPublished
8

Structural characterization of eukaryotic GTPase associated centre.

January 2013 (has links)
蛋白質合成的延伸階段由兩個延伸因子推動,而這兩個延伸因子與核糖體的結合點同樣位於核糖體柄的底部。作為GTP酶,這兩個延伸因子本身無活性,需要依賴GTP酶相關中心在適當的時候把他們轉化為活性酶。真核生物的GTP酶相關中心由28S核糖體核糖核酸58個鹼基、P0(P1/P2)₂五聚體蛋白複合體及柄基蛋白eL12組成。由於核糖體柄的動態結構,這個區域在現今的真核生物核糖體結構研究中仍然未能解構,而我們的研究成功判斷出核糖體柄複合結構的特徵。我們確定了穩定P1/P2異源二聚體的相互作用,指出P1/P2異源二聚體比P2同源二聚體擁有較高的構象穩定性。同時我們發現了P1第三螺旋上一個外露的疏水區,對於P1/P2異源二聚體與P0的結合有重要的作用。就此我們決定了P0的兩個脊柱螺旋為P1/P2異源二聚體的結合點。利用同源模擬法及蛋白突變,我們提出了有關核糖體柄結構的新模型。在這個模型中,結合於P0上的兩個異源二聚體以P2/P1:P1/P2序列。我們提出的模型能夠解釋每個P-蛋白對GTP酶活性的不同貢獻,以及P0上兩個P1/P2異源二聚體的功能協同性。這個模型中核糖體柄結構的方向性,最能配合核糖體柄募集延伸因子的功能。基於對核糖體柄的研究,我們進一步研究柄基蛋白eL12並提出初步數據顯示eL12與核糖體柄之間的直接互動。這個研究結果提出,eL12的功能很可能是透過與核糖體柄的直接活動來傳遞結合及激活訊號。我們就GTP酶相關中心的研究補充了對真核生物核糖體結構的研究,加深了對GTP酶相關中心如何推動蛋白質合成的理解。 / The elongation cycle of protein synthesis is driven by two elongation factors that bind to overlapping sites at the base of the ribosomal stalk. Both factors have limited inherent GTPase activity and they rely on the GTPase associated centre to activate GTP hydrolysis at appropriate times during elongation. In eukaryotes, this region consists of a 58-base 28S ribosomal RNA, the P0(P1/P2)₂ pentameric stalk complex and the stalk base protein eL12. Due to the dynamic nature of the ribosomal stalk, this region remains as a missing piece in the high-resolution structural studies of the eukaryotic ribosome. In this work, we have characterized the structural organization of the stalk complex. We have identified the stabilizing interactions within P1/P2 heterodimer and showed that P1/P2 heterodimer is preferred over P2 homodimer due to its higher conformational stability. We have also identified an exposed hydrophobic patch on helix-3 of P1 that is important for anchoring P1/P2 heterodimers to P0 and we havemapped two spine helices on P0 as the binding sites for P1/P2 heteodimer. Based on homology modelling and mutagenesis experiments, we have proposed a new model of the eukaryotic stalk complex where the two heterodimers display a P2/P1:P1/P2 topology on P0. Our model provides an explanation for the difference of GTPase activities contributed by each P-protein and the functional contribution of the hydrophobic loop between the two spine helices of P0. Our model represented the stalk complex in an orientation that is the most effective for recruiting translation factors to their binding sites. As an extension to our studies, we have preliminary data showing direct interaction between eL12 and stalk complex. This is a strong suggestion that eL12 contributes to its functional role by transmitting signal for factor binding and activation through direct interaction with the stalk complex. Our work on the GTPase associated centre has supplemented the structural studies of the eukaryotic ribosome and provided a betterpicture of how the GTPase associated centre contributes to the high efficiency of protein synthesis. / Detailed summary in vernacular field only. / Yu, Wing Heng Conny. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 117-125). / Abstract also in Chinese. / Chapter i. --- Abstract --- p.1 / Chapter ii. --- 摘要 --- p.3 / Chapter iii. --- Acknowledgments --- p.4 / Chapter iv. --- Disclaimer --- p.5 / Chapter v. --- List of figures --- p.6 / Chapter vi. --- Table of Contents --- p.7 / Chapter Chapter 1. --- Project Background and Objectives --- p.10 / Chapter 1.1. --- The ribosome --- p.10 / Chapter 1.1.1. --- Its components: ribosomal RNA and proteins --- p.10 / Chapter 1.1.2. --- Its function: protein translation --- p.12 / Chapter 1.2. --- The GTPase Associated Centre --- p.13 / Chapter 1.2.1. --- P-complex: P0, P1 and P2 --- p.14 / Chapter 1.2.2. --- Stalk base protein: eL12 --- p.16 / Chapter 1.3. --- Project objectives --- p.17 / Chapter 1.3.1. --- Structural organization of the P-complex --- p.18 / Chapter 1.3.2. --- Characterization of the interaction between eL12 and P-complex --- p.19 / Chapter Chapter 2. --- Methods and Materials --- p.20 / Chapter 2.1. --- DNA Techniques --- p.20 / Chapter 2.1.1. --- Agarose gel electrophoresis of DNA --- p.20 / Chapter 2.1.2. --- Sub-cloning --- p.21 / Chapter 2.1.3. --- Site-directed mutagenesis --- p.23 / Chapter 2.2. --- RNA Techniques --- p.24 / Chapter 2.2.1. --- in vitro transcription and purification of RNA --- p.24 / Chapter 2.2.2. --- Agarose gel electrophoresis of RNA --- p.25 / Chapter 2.2.3. --- Electrophoretic mobility shift assay (EMSA) --- p.26 / Chapter 2.3. --- General protein techniques --- p.27 / Chapter 2.3.1. --- Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) --- p.27 / Chapter 2.3.2. --- Native PAGE for acidic proteins --- p.28 / Chapter 2.3.3. --- Protein transfer and Western blotting --- p.29 / Chapter 2.4. --- Expression and purification of recombinant proteins --- p.30 / Chapter 2.4.1. --- Preparation of E. coli competent cells --- p.30 / Chapter 2.4.2. --- Transformation and bacterial culture --- p.31 / Chapter 2.4.3. --- Protein extraction by cell lysis. --- p.32 / Chapter 2.4.4. --- Purification of P2 and mutants --- p.33 / Chapter 2.4.5. --- Purification of P1 and mutants --- p.36 / Chapter 2.4.6. --- Purification of His-P0 and mutants --- p.39 / Chapter 2.4.7. --- Purification of P1/P2 heterodimer and mutants --- p.41 / Chapter 2.4.8. --- Reconstitution and purification of P0(P1/P2)₂ complex and mutants --- p.43 / Chapter 2.4.9. --- Purification of eL12 and mutants --- p.44 / Chapter 2.5. --- Preparation of rat Elongation factor 2 (EF-2) --- p.46 / Chapter 2.5.1. --- Preparation of liver lysate --- p.46 / Chapter 2.5.2. --- Purification of rat EF-2 --- p.47 / Chapter 2.6. --- Circular dichroism (CD) spectrometry --- p.49 / Chapter 2.6.1. --- Chemical denaturation --- p.50 / Chapter 2.6.2. --- Thermal denaturation --- p.51 / Chapter 2.7. --- Limited proteolysis --- p.52 / Chapter 2.8. --- Light scattering (LS) experiments --- p.53 / Chapter 2.8.1. --- Size exclusion chromatography coupled with light scattering detection (SEC/LS) --- p.53 / Chapter 2.8.2. --- Dynamic light scattering (DLS) --- p.54 / Chapter 2.9. --- in vitro binding assay using NHS-activated Sepharose --- p.55 / Chapter 2.10. --- Homology modelling --- p.56 / Chapter 2.10.1. --- Sequence alignment --- p.56 / Chapter 2.10.2. --- Modelling using UCSF Chimera built-in Modeller --- p.57 / Chapter 2.10.3. --- Modelling using Modeller scripts --- p.58 / Chapter 2.11. --- Buffers and reagents --- p.60 / Chapter 2.11.1. --- Media for general bacterial culture --- p.60 / Chapter 2.11.2. --- Reagents for DNA and RNA gel electrophoresis --- p.61 / Chapter 2.11.3. --- Reagents for SDS-PAGE and native PAGE --- p.62 / Chapter 2.11.4. --- Reagents for Western blotting --- p.62 / Chapter 2.12. --- Sequences of DNA oligos --- p.64 / Chapter 2.12.1. --- Primers for P1 mutants --- p.64 / Chapter 2.12.2. --- Primers for P0 mutants --- p.65 / Chapter 2.12.3. --- Primers for eL12 and its mutants --- p.66 / Chapter 2.12.4. --- DNA template for in vitro transcription --- p.68 / Chapter Chapter 3. --- Structural Organization of the Eukaryotic Stalk Complex --- p.69 / Chapter 3.1. --- Introduction --- p.69 / Chapter 3.2. --- Results --- p.71 / Chapter 3.2.1. --- Homology modelling of P1/P2 heterodimer --- p.71 / Chapter 3.2.2. --- P1/P2 heterodimer is stabilized by a hydrophobic interface --- p.74 / Chapter 3.2.3. --- Helix-3 of P1 plays a vital role in P-complex formation --- p.78 / Chapter 3.2.4. --- C-terminal tails are not involved in P-complex formation --- p.80 / Chapter 3.2.5. --- Spine helices of P0 are the binding sites for P1/P2 heterodimers --- p.83 / Chapter 3.2.6. --- Homology modelling of the pentameric complex --- p.86 / Chapter 3.3. --- Discussion --- p.89 / Chapter 3.3.1. --- Comparison between homology model and structure of P1/P2 heterodimer --- p.89 / Chapter 3.3.2. --- Biological significance of P2/P1:P1/P2 topology --- p.92 / Chapter 3.4. --- Towards structure determination of P-complex --- p.97 / Chapter Chapter 4. --- Characterization of the interaction between eL12 and P-complex. --- p.99 / Chapter 4.1. --- Introduction --- p.99 / Chapter 4.2. --- Results --- p.100 / Chapter 4.2.1. --- Homology modelling of human eL12 --- p.100 / Chapter 4.2.2. --- Characterization of recombinant eL12 --- p.103 / Chapter 4.2.3. --- eL12 directly interacts with P-complex via its N-terminal residues --- p.106 / Chapter 4.3. --- Discussion --- p.108 / Chapter 4.4. --- Towards structure determination of eL12 --- p.111 / Chapter Chapter 5. --- Conclusion and future work --- p.114 / Chapter 5.1. --- Proposed working mechanism of eukaryotic GTPase Associated Centre --- p.114 / Chapter 5.1.1. --- Anchorage to the ribosome through RNA binding --- p.114 / Chapter 5.1.2. --- P1/P2 heterodimers are bound to P0 in a P2/P1:P1/P2 topology --- p.114 / Chapter 5.1.3. --- eL12 as functional player in the GTPase associated centre. --- p.115 / Chapter 5.2. --- Future work --- p.116 / Chapter vii. --- References --- p.117
9

Characterization of the vacuolar H r-AtPase of higher plants

Manolson, Morris F. January 1988 (has links)
No description available.
10

Investigation into the biological function of the highly conserved GTPase LepA

Sinan, Canan P., School of Microbiology & Immunology, UNSW January 2001 (has links)
LepA is a highly conserved GTP-binding protein of unknown function. Its amino acid sequence reveals that it is a GTPase with homology to elongation factor G (EF-G). Previous data led to the hypothesis that LepA negatively regulates a posttranslational process such as protein folding. To examine this possibility, two sets of strains carrying mutated alleles encoding molecular chaperones in E. coli were transformed with a lepA expression vector. LepA had a dominant negative effect specifically in a dnaK25 strain whose product exhibits a 20-fold lower ATPase activity compared to wild-type DnaK. The expression of DnaK and other heat-shock proteins is repressed following temperature downshift. Aptly, it was found that temperature shift from 37 degrees Celcius to 15 degrees Celcius in cells harboring a lepA expression vector led to the induction of lepA and downstream lepB. Furthermore, like cold-shock genes, lepA and lepB are induced by sublethal doses of chloramphenicol, although it appears that lep operon induction is related to the antibiotic's action on the 50S ribosome. Due to LepA's insolubility, it could not be confirmed whether it interacts with DnaK, DnaJ or which other proteins it interacts with. Two-dimensional gel electrophoretic analysis revealed the absence of an isoform of OmpA in two lepA deletion strains. It is possible that LepA is involved in a folding pathway that is responsible for the conformation of this isoform. Phylogenetic analysis showed that while LepA is extremely well conserved and has been identified in all completed Bacterial and Eukaryal genomes, it is not present in the completed genomes of any Archaea. Sequence analysis revealed the existence of N-terminus mitochondrial import sequences in Eukaryal LepA orthologues. Additionally, A. thaliana contains a second LepA orthologue that clusters phylogenetically with Synechocystis LepA and has a chloroplastic import sequence. This indicates that plastidal LepA was acquired in A. thaliana (and probably in all plants) through endosymbiosis of an ancestral cyanobacterium. In constrast, mitochondrial LepA are not closely related to those of a- proteobacteria, believed to be the precursors of mitochondria. These findings imply that in sharp contrast to mitochondrial LepA, chloroplastic LepA is under strong evolutionary pressure to remain conserved.

Page generated in 0.0452 seconds