• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bridgehead substituted scorpionates providing helically chiral complexes

Bell, Nicola Louise January 2013 (has links)
Tripodal borate ligands, including Tp and Tm, are some of the most widely used in organometallic chemistry and were originally prepared, as anions, from the reaction of the relevant heterocycle with an alkali metal borohydride. However, an alternate route, allowing access to zwitterionic, charge-neutral, scorpionates was recently developed within the Bailey group using tris(dimethylamino)borane as the boron source. This thesis describes the expansion of the borane synthetic route to create new, charge-neutral, zwitterionic, tris(methimazolyl)borate (ZTm) ligands containing B-N, B-O and B-C coordinate bonds. Unusual reactivity with isonitrile donors is also presented which has allowed access to boron substituted anionic Tm ligands from the charge-neutral starting material, (HNMe2)ZTm. Attempts to control the helical chirality of ZTm complexes, by using chiral imidazoline donors on the central boron are also described. The borane synthetic route has allowed access to the novel ligand ZThp, the first example of a tripod based on 2-hydroxypyridine ligand arms. As with Tm, this ligand exhibits helical chirality upon complexation and demonstrates how individual atom hybridisation within the ligand arms affects the helicity and thus the chirality of flexible scorpionate ligands. Coordination studies of both zwitterionic and boron-substituted anionic Tm ligands have shown a tendency for the formation of ‘sandwich’ complexes of the form L2M with some metal precursors, whilst the formation of the corresponding ‘half-sandwich’ complexes of these ligands with ruthenium and rhodium was found to be disfavoured.
2

Capsules, secondary interactions and unusual multi-metallic complexes

Hart, John Stewart January 2012 (has links)
Research into inorganic supramolecular chemistry is burgeoning, in particular that which focuses on the formation of capsular molecules and the effects that these unique environments have on catalytic reactions. With the aim of producing new ligand designs that could not only support reactive metals, but also partake in supramolecular aggregation to provide a capsular microenvironment, new tripodal ligands and wide span imines and amines have been synthesised. Furthermore, the exploitation of hydrogen-bonding motifs formed through pyrrole-imine tautomerisation upon metallation of these ligands has been explored, with the aim of enhancing reactivity and stabilising reactive intermediates. In Chapter one, the concept of covalent and non-covalent capsules is introduced, and includes the different aspects affecting the encapsulation of molecules and their use as nanoreactors. The use of secondary interactions, e.g. hydrogen-bonding in metal complexes of tetrapodal and tripodal ligands is discussed. Chapter two describes the synthesis of a tripodal pyrrole-imine ligand and the formation of its multi-metallic complexes of Group one metals, transition metal and the f-block elements. The complete and partial tautomerisation of this ligand upon metal complexation is also examined. In Chapter three, the formation of hangman complexes of the tripodal pyrrole-imine ligand is described and is extrapolated to the chemistry of a new pyrrole-amide ligand. The synthesis of this latter ligand and its properties with regards to anion binding are also explored. Chapter four describes the formation of wide span diamine and diimine ligands and their propensity to form adducts with cobalt and zinc chlorometallates and unusual multimetallic palladium complexes. The final conclusions of the work presented in this thesis are drawn in Chapter five. Chapter six presents experimental details and characterising data for all of the new compounds presented in this thesis.
3

New peptide-type tripodal ligands and their metal complexes : synthesis, thermodynamic and structural study, application in catalytic function / Nouveaux ligands tripodes et leurs complexes métalliques : synthèse, études thermodynamiques et structurales, application en catalyse enzymatique

Dancs, Ágnes 13 December 2017 (has links)
De nos jours, un des objectifs importants de la recherche bioinorganique moderne est le développement d'enzymes artificielles. L'étude séquentielle des acides aminés présents dans le centre actif des métalloenzymes peut présenter une voie possible de la stratégie de modélisation enzymatique. Cependant, les peptides linéaires ont leurs limites lors de la reconstitution des centres actifs des métalloenzymes : ils ne possèdent pas la structure tridimensionnelle bien définie, par conséquent leur structure est vulnérable vis-à-vis de la coordination ou de l’hydrolyse des azotes amidiques. La capacité de coordination des métaux par des peptides linéaires peut être améliorée, par exemple, en les attachant à une plateforme tripodale. Les composés tripodaux peuvent assurer une organisation structurale rigide ou moins flexible pour des chaînes latérales des acides aminés, créant ainsi des sites de coordination pré-organisés pour les métaux. Dans cette thèse, la synthèse et la caractérisation des ligands peptidiques tripodaux contenant de l'histidine et la formation des complexes en présence de cuivre(II) et de zinc(II) sont présentées. Les propriétés acido-basiques ont été étudiées par potentiométrie et différentes techniques spectroscopiques ont été utilisées pour la caractérisation structurale (UV-Vis, CD, ESR, RMN et MS). Outre que la caractérisation thermodynamique et structurale, des propriétés catalytiques des complexes en réaction enzymatiques (oxydation du catéchol, dismutation du superoxyde) ont également été étudiées. Nos résultats ont démontré que les ligands peptidiques tripodaux sont capables d'améliorer la stabilité des complexes métalliques et qu'ils peuvent fournir des structures adéquates pour mimer efficacement les fonctions catalytiques des enzymes. Grâce aux études approfondies et systématiques des propriétés acido-basiques et spectroscopiques, nous avons mis en évidence les forces motrices de la coordination des métaux et établi l'impact de la structure tripodale sur la stabilité, la structure et les propriétés catalytiques des complexes formés. Nos résultats confirment l'effet bénéfique des plateformes tripodales durant la complexation des métaux, et soulignent les possibilités qui s’offrent aux peptides tripodaux dans le domaine de la biomimétisme / One of the most important directions of modern bioinorganic research is the development of artificial enzymes. One pathway of enzyme modeling strategy is the study of amino acid sequences present in the active centers of metalloenzymes. Linear peptides, however, have their limitations in reconstituting the active centers of metalloenzymes, since they do not possess the well-defined three dimensional structure, therefore their structure is vulnerable towards amide nitrogen coordination/hydrolysis. Improvement of metal binding capabilities of linear peptides can be obtained by e.g. their functionalization with tripodal ligands. Tripodal compounds may provide a rigid, less flexible platform for the coordinating amino acid side chains, creating pre-organized metal binding sites. In my thesis, I present synthesis and characterization of histidine containing tripodal peptide ligands and their complex formation in presence of copper(II) and zinc(II). Solution equilibrium was studied with pH potentiometric measurements, and several spectroscopic methods were used for structural characterization (UV-Vis, CD, ESR, NMR and MS methods). Beside thermodynamic and structural characterization, enzyme mimicking catalytical properties of the complexes have also been investigated (catechol oxidation, superoxide dismutation). Our results demonstrated that tripodal peptide ligands are capable of enhancing the stability of metal-peptide complexes, and they may provide convenient structures to efficiently mimic the catalytic functions of enzymes. With thorough and systematical solution equilibrium and spectroscopic studies, we uncovered the driving forces of metal coordination, and established the impact of the tripodal structure in stability, structure and catalytic properties of the forming complexes. Our findings confirm the beneficial effect of tripodal scaffolds in peptide-type ligand-metal complexes, and emphasize the possibilities lying within tripodal peptides in the field of enzyme mimicking
4

Synthèse et étude de nouveaux chélateurs pour la détoxification d'ions métalliques d¹º dans l'organisme / Synthesis and studies of new chelators for the detoxification of d10 metal ions in organisms

Jullien, Anne-Solène 04 October 2013 (has links)
Ce travail de thèse a consisté à synthétiser de nouveaux chélateurs pour la complexation des ions métalliques d10 toxiques en milieu biologique, comme le cuivre (I), lorsqu'il est présent en excès dans les cellules, et le mercure (II), délétère à l'état de traces. En particulier, des tripodes à trois soufres, inspirés de tripodes fonctionnalisés par trois dérivés cystéine, développés antérieurement au laboratoire, ont été élaborés et leur propriétés de complexation avec le cuivre (I) ont été examinées. Comme les tripodes cystéines, les nouveaux tripodes fonctionnalisés par d'autres dérivés soufrés, en particulier des dérivés de D-Pénicillamine (D-PEN), sont capables de complexer le cuivre (I) dans des environnements CuS3 avec de fortes affinités et sélectivités par rapport au zinc (II) présent dans les milieux biologiques. Des études structurales approfondies effectuées par spectroscopie d'absorption des rayons X (XAS) ont permis de caractériser complètement les complexes et clusters de cuivre (I) formés, de corréler les mesures d'affinités effectuées en utilisant différentes techniques et de rationaliser les relations structure/ affinité observées. L'un des nouveaux tripodes a ensuite été fonctionnalisé pour être ciblé vers les cellules du foie, où une accumulation de cuivre est observée chez les patients atteints de la maladie de Wilson. Les premiers tests biologiques réalisés sur des cellules hépatiques ont montré que l'architecture fonctionnalisée ainsi conçue (CHEL4) est capable de complexer le cuivre (I) en excès in cellulo. Cette étude conforte les résultats obtenus antérieurement au laboratoire avec le tripode cystéine fonctionnalisé (CHEL2) et valide donc le système de vectorisation vers les hépatocytes. Les propriétés de complexation des nouveaux tripodes avec l'ion toxique mercure (II), plus gros et plus mou que l'ion cuivre (I), ont aussi été étudiées. Il a ainsi été établi que les nouveaux tripodes thiolates peuvent aussi stabiliser un environnement trigonal autour du mercure (II). Notre étude a donc montré comment des tripodes soufrés de faible poids moléculaire, judicieusement fonctionnalisés, peuvent accommoder des environnements trigonaux très stables autour des ions mous cuivre (I) et mercure (II). De tels environnements miment plus ou moins les sites trigonaux du cuivre (I) et du mercure (II) trouvés dans les protéines à cuivre (I) (Ctr1, Mac1, Ace 1, COX…), les protéines bactériennes de détoxification du mercure (II) (Mer-R), et les métallothionéines (MTs), petites protéines riches en cystéines qui complexent les ions métalliques en excès ou toxiques dans les cellules. Ces analogies avec les complexes métalliques biologiques permettent de rationnaliser les fortes affinités des nouveaux tripodes pour les ions mous cuivre (I) et mercure (II). Plus généralement, notre étude apporte des règles de design moléculaires pour concevoir des architectures efficaces dédiées à la détoxification des métaux mous en milieu biologiques. Mots clés : cuivre (I), zinc (II), mercure (II), maladie de Wilson, foie, surcharges métalliques, toxicité, chélateurs, tripodes soufrés, cystéine, D-pénicillamine (D-PEN), environnements trigonaux, protéines du cuivre (I), métallothionéines (MTs), Mer-R, Spectroscopie d'Absorption des rayons X (XAS). / This work consisted in the syntheses of new chelators for the binding of soft d10 metal ions in biological media, such as the copper (I) ion, toxic at high levels in the cells, and the mercury (II) ion, deleterious even at low concentrations. In particular, new suphur-based tripodal architectures, derived from the cysteine-based architectures previously designed at the laboratory, have been synthetized and their binding properties with the copper (I) ion have been looked into. As the cysteine-based scaffolds, the new chelators, based on new sulphur compounds, in particular D-Penicillamine (D-PEN) derivatives, complex the copper (I) ion in trigonal CuS3 environments with high affinities and high selectivities with respect to the bioavailable zinc (II) ion. In depth structural studies have been performed by X-Ray Absorption Spectroscopy (XAS) to fully characterize the copper (I) complexes and the copper (I) clusters formed in solution, to correlate the affinity measurements performed using different analytical techniques and to rationalize structure/ affinity relationships. One of the new chelators has been functionalized to be targeted to the liver cells, where copper (I) overloads are observed when people suffer from the Wilson's disease. The first biological experiments carried out in hepatocytes, have shown that the functionalized chelator (CHEL4) complexes excess copper (I) in cellulo. This study supports the results previously obtained with the functionalized cysteine-based architecture (CHEL2) and thus validates the targeting system. The binding properties of the new tripodal architectures with the mercury (II) ion, bulkier and softer than the copper (I) ion, have also been studied. It has been established that the new chelators also stabilize trigonal environments around the mercury (II) ion. Thus this study has shown how low molecular weight sulphur-based tripodal architectures, judiciously functionalized, are able to adapt stable sulphur-only trigonal environments around the soft metal ions, copper (I) and mercury (II). Such environments reproduce more or less the trigonal binding sites found in copper (I) proteins (Crt1, Mac1, Ace1, COX…), bacteria proteins dedicated to mercury (II) detoxification (Mer-R) and metallothioneins (MTs), which are small cysteine-rich proteins in charge of the detoxification of toxic metal ions in cells. Those structural analogies shared with the biological metallic complexes allow us to rationalize the high affinities of the new tripodal architectures for soft metal ions. In a more extended point of view, this study brings some guidelines of molecular design to elaborate efficient chelators dedicated to the detoxification of soft metal ion in biological media. Keywords: copper (I), zinc (II), mercury (II), Wilson's disease, liver, metal overloads, toxicity, chelators, sulphur-based tripods, cysteine, D-penicillamine (D-PEN), trigonal environments, copper (I) proteins, metallothioneins, Mer-R, X-Ray Absorption Spectroscopy (XAS).
5

Two approaches to the design and synthesis of bimetallic complexes

Tsai, Yi-Ju 01 January 2014 (has links)
Dirhodium complexes have been known for their catalytic reactivities toward C-H bond activation for nearly two decades. However, both experimental and theoretical studies have not given a clear explanation on the roles of each metal in the reactivities, largely due to the limited number of available bimetallic species. To study the system systematically, we set our goal to synthesize bimetallic complexes from two independent approaches. In the first approach, five N, N’ -diarylformamidines with symmetric or asymmetric substituents on the phenyl groups were synthesized and fully characterized. Formamidines without bulky substituents exhibited fluxionality in solution, which was proved by a single set of signal in 1 H NMR. In contrast, two sets of signals were observed for formamidines with bulky substituents in the ortho positions, indicating two major stereoisomers ( E and Z conformers) co-existing in solution. In solid state, strong stability for E conformers was gained from a pair of H bonds between two ligands facing each other. The phenomenon was observed for all ligands but N, N’ -bis(2,6-dimethylphenyl)formamidine ( L2 ), in which ligands in Z conformation were connected through H bonds from both sides of a ligand and an infinite chain structure formed in solid state. Metallation of the formamidines with diethylzinc and mesitylmagnesium bromide produced ten complexes in a variety of geometries, indicating a rich diversity in geometry for the formamidine family as coordination ligands. Among these complexes, three bimetallic complexes, with metal atoms close in distance, are potential candidates for the formation of complexes with metal-metal bonds. In each dizinc complex, two formamidinates (deprotonated formamidines) spanned over the two Zn atoms and brought them together, while in the dimagnesium complex, the two Mg atoms were bridged by two bromides, resulting in a Mg 2 Br 2 cubic core. In the other approach, two newly designed tripodal ligands were obtained at relatively high yields. Each of the ligands contains three branches built up from a central atom C or N. Lone pairs on the three branches of a deprotonated ligand working together could behave like a three-prong clamp and secure two metal centers closely in the pocket. A dichromium complex with a geometry matching our initial design was successfully synthesized. Meanwhile, two monometallic complexes, potential candidates as precursors to heterobimetallic complexes, were obtained.

Page generated in 0.0407 seconds