• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur l'approximation rationnelle de fonctions de la variable complexe au sens de la norme de Hardy

Fares, M'Barek 28 June 1982 (has links) (PDF)
.
2

Certain problems concerning polynomials and transcendental entire functions of exponential type

Hachani, Mohamed Amine 06 1900 (has links)
Soit P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ un polynôme de degré n et M:=\sup_{|z|=1}|P(z)|.$ Sans aucne restriction suplémentaire, on sait que $|P'(z)|\leq Mn$ pour $|z|\leq 1$ (inégalité de Bernstein). Si nous supposons maintenant que les zéros du polynôme $P$ sont à l'extérieur du cercle $|z|=k,$ quelle amélioration peut-on apporter à l'inégalité de Bernstein? Il est déjà connu [{\bf \ref{Mal1}}] que dans le cas où $k\geq 1$ on a $$(*) \qquad |P'(z)|\leq \frac{n}{1+k}M \qquad (|z|\leq 1),$$ qu'en est-il pour le cas où $k < 1$? Quelle est l'inégalité analogue à $(*)$ pour une fonction entière de type exponentiel $\tau ?$ D'autre part, si on suppose que $P$ a tous ses zéros dans $|z|\geq k \, \, (k\geq 1),$ quelle est l'estimation de $|P'(z)|$ sur le cercle unité, en terme des quatre premiers termes de son développement en série entière autour de l'origine. Cette thèse constitue une contribution à la théorie analytique des polynômes à la lumière de ces questions. / Let P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ a polynomial of degree n and M:=\sup_{|z|=1}|P(z)|$. Without any additional restriction, we know that $|P '(z) | \leq Mn$ for $| z | \leq 1$ (Bernstein's inequality). Now if we assume that the zeros of the polynomial $P$ are outside the circle $| z | = k$, which improvement could be made to the Bernstein inequality? It is already known [{\bf \ref{Mal1}}] that in the case where $k \geq 1$, one has$$ (*) \qquad | P '(z) | \leq \frac{n}{1 + k} M \qquad (| z | \leq 1),$$ what would it be in the case where $k < 1$? What is the analogous inequality for an entire function of exponential type $\tau$? On the other hand, if we assume that $P$ has all its zeros in $| z | \geq k \, \, (k \geq 1),$ which is the estimate of $| P '(z) |$ on the unit circle, in terms of the first four terms of its Maclaurin series expansion. This thesis comprises a contribution to the analytic theory of polynomials in the light of these problems.

Page generated in 0.0514 seconds