• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The comparison of item-based and trust-based CF in sparsity problems

Wu, Chun-yi 02 August 2007 (has links)
With the dramatic growth of the Internet, it is much easier for us to acquire information than before. It is, however, relatively difficult to extract desired information through the huge information pool. One method is to rely on the search engines by analyzing the queried keywords to locate the relevant information. The other one is to recommend users what they may be interested in via recommender systems that analyze the users¡¦ past preferences or other users with similar interests to lessen our information processing loadings. Typical recommendation techniques are classified into content-based filtering technique and collaborative filtering (CF) technique. Several research works in literature have indicated that the performance of collaborative filtering is superior to that of content-based filtering in that it is subject to neither the content format nor users¡¦ past experiences. The collaborative filtering technique, however, has its own limitation of the sparsity problem. To relieve such a problem, researchers proposed several CF-typed variants, including item-based CF and trust-based CF. Few works in literature, however, focus on their performance comparison. The objective of this research is thus to evaluate both approaches under different settings such as the sparsity degrees, data scales, and number of neighbors to make recommendations. We conducted two experiments to examine their performance. The results show that trust-based CF is generally better than item-based CF in sparsity problem. Their difference, however, becomes insignificant with the sparsity decreasing. In addition, the computational time for trust-based CF increases more quickly than that for item-based CF, even though both exhibit exponential growths. Finally, the optimal number of nearest neighbors in both approaches does not heavily depend on the data scale but displays steady robustness.
2

Item-level Trust-based Collaborative Filtering Approach to Recommender Systems

Lu, Chia-Ju 23 July 2008 (has links)
With the rapid growth of Internet, more and more information is disseminated in the World Wide Web. It is therefore not an easy task to acquire desired information from the Web environment due to the information overload problem. To overcome this difficulty, two major methods, information retrieval and information filtering, arise. Recommender systems that employ information filtering techniques also emerge when the users¡¦ requirements are too vague in mind to express explicitly as keywords. Collaborative filtering (CF) refers to compare novel information with common interests shared by a group of people for recommendation purpose. But CF has major problem: sparsity. This problem refers to the situation that the coverage of ratings appears very sparse. With few data available, the user similarity employed in CF becomes unstable and thus unreliable in the recommendation process. Recently, several collaborative filtering variations arise to tackle the sparsity problem. One of them refers to the item-based CF as opposed to the traditional user-based CF. This approach focuses on the correlations of items based on users¡¦ co-rating. Another popular variation is the trust-based CF. In such an approach, a second component, trust, is taken into account and employed in the recommendation process. The objective of this research is thus to propose a hybrid approach that takes both advantages into account for better performance. We propose the item-level trust-based collaborative filtering (ITBCF) approach to alleviate the sparsity problem. We observe that ITBCF outperforms TBCF in every situation we consider. It therefore confirms our conjecture that the item-level trusts that consider neighbors can stabilize derived trust values, and thus improve the performance.

Page generated in 0.0245 seconds