• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photophysics of linear and star-shaped oligofluorenes and their application in lasers

Montgomery, Neil A. January 2013 (has links)
This thesis presents a study of the photophysical properties of a number of fluorene molecules used for organic semiconductor lasers. These results are then combined with lasing results to assess what the important properties in an organic semiconductor laser material are. Photophysical measurements were performed on a family of oligofluorenes; results show a redshift in the peak absorption and emission wavelengths with increasing length. There is also an increase in the molar extinction coefficient and photoluminescence quantum yields of the molecules. Transition dipole moments also increase with length, but fluorescence scales slower than absorption due to self-trapping occurring at longer molecular lengths. This study was then expanded to two families of star-shaped molecules with fluorene arms and differing cores. These molecules have three arms connected to either a central benzene unit or a larger truxene core. These molecules show an increase in PLQY and roughly three times higher molar extinction coefficients than comparable linear oligofluorenes. The star-shaped molecules PLQY and transition dipole moments are both greater than their linear oligofluorene counterparts. Energy transfer was then studied in the truxene-cored molecules, which showed that the symmetry of the molecule was broken due to interactions with the solvent. Energy transfer was observed on two timescales; a fast 500 fs process which is attributed to a localisation onto a single arm to emit, and a 3-10 ps second decay component, and was assigned to resonant energy transfer between the arms. Both decays were found to be wavelength dependent. Lasing results were then obtained for the benzene cored molecules. It was found that star-shaped molecules present improved lasing characteristics with lower ASE and lasing thresholds. These results were compared with those obtained for truxene-cored molecules whose rigid core provides them with better lasing and ASE characteristics.
2

Mécanisme du transfert d'énergie dans les états excités de colorants d’oligopyrroles pontés par un truxene / Excited state energy transfer mechanism in oligopyrrole dyes bridged by truxene

Langlois, Adam January 2017 (has links)
Abstract : The transfer of energy between excited state chromophores is a topic of interest in the area of natural and laboratory photonic devices. Indeed, energy transfer is a process seen in nature in all photosynthetic organisms from complex multicellular plants to simple, single cell photosynthetic bacteria. For example, the purple photosynthetic bacteria uses two protein assemblies, referred to as the light-harvesting protein 1 (LH1) and the light-harvesting protein 2 (LH2), to collect light energy in order to survive. The LH2 protein serves only to absorb and transmit light energy to the LH1, which contains a special pair in a central reaction center. Energy transfer is essential to the survival of the organism. A photon of light absorbed by a bacteriochlorophyll molecule in the LH2 protein will undergo efficient energy transfer to other bacteriochlorophylls within the same protein structure. Energy transfer will also occur between different LH2 proteins and between the LH2 and LH1 protein. These energy transfer processes all serve to funnel the light to the reaction center which itself is excited by energy transfer. This process is highly efficient and essential to the organism’s survival. In the area of material sciences, the design of a covalent or non-covalent donor-acceptor assembly that exhibits efficient energy transfer, is a topic of interest for application in solar energy and light emitting diodes. Using the purple photosynthetic bacteria as a model, designs that append different dyes that serve to absorb and transmit light energy to a central backbone (a process referred to as the antenna effect) are being investigated. The principle being that the use of these antenna allows for the absorption of more light in regions of the electromagnetic spectrum that we cannot necessarily obtain with a single dye. The fall-back is that, in order for the process to work efficiently, the energy transfer between the antenna and backbone must be rapid. This work presents an investigation of the energy transfer processes between oligopyrrole dyes that are bridged by a truxene core, which exhibits a structural similarity to graphene. The aim of this work is to further understand the energy transfer processes between chromophores. We demonstrate in our work that the presence of a conjugated bridge between the donor and acceptor provides the possibility of a dual energy transfer process governed by both the Förster and Dexter mechanisms. We demonstrate that the use of this conjugated bridge leads to a very fast energy transfer process despite the large distance that separates the donor and acceptor. We further demonstrate that the process, although being a dual process, is dominated by the Dexter ix mechanism which is mediated by the conjugated system connecting the donor and acceptor. The rapid and efficient energy transfer processes suggest that in order to take full advantage of the antenna effect in man-made photonic devices, designs should be built upon the use of conjugated bridges between the donor and acceptor. The work presented in this thesis is divided into eight sections. In the introduction, a brief description of the chromophores that are seen throughout the rest of this work, is provided along with some general concepts with regard to density functional theory (DFT), which was employed as a tool throughout the presented works to demonstrate a certain degree of molecular orbital coupling. Chapter 1, entitled The Basic Principles of Photophysics, provides an introductory explanation of the theory that is required to fully understand the works that are presented in this thesis. Chapter 2 is simply entitled Instrumentation and serves to provide a description of the instruments used throughout the works. In Chapter 3: Maple™-Assisted Calculations of the J-integral: A Key Parameter for the Understanding of Excited State Energy Transfer in Porphyrins and other Chromophores a detailed description of the J-integral is provided and a tool for is calculation from spectral data is presented. The investigation of the energy transfer processes between truxene bridged chromophores begins in Chapter 4: Origin of the Temperature Dependence of the Rate of Singlet Energy Transfer in a Three-Component Truxene-bridged Dyads. In this chapter, the energy transfer between a Zn-porphyrin donor and a set of free-base porphyrin acceptors is investigated. Circumstantial evidence suggests that the energy transfer process that is observed, is occurring through a dual mechanism that may be dominated by the Dexter mechanism is provided. Chapter 5: Antenna Effect in Truxene-bridged BODIPY Triarylzinc(II)porphyrin Dyads: Evidence for a Dual Dexter-Förster Mechanism presents the investigation of the energy transfer processes between a BODIPY donor and two zinc(II)-porphyrin acceptors. In this chapter the comparison of the the energy transfer process to a similar dyad, that contains a non-conjugated bridge between the donor and acceptor, is made and it is shown that the truxene bridged dyad not only presents a faster rate, but that this faster rate can only be explained by a Dexter dominant process. In Chapter 6: Very Fast Singlet and Triplet Energy Transfers in a Tri-chromophoric Porphyrin Dyad Aided by the Truxene Platform the investigation of the energy transfer between a palladium(II)-porphyrin donor and pair of Zn-porphyrin acceptors bridged by a truxene core is x carried out. Here, a very fast triplet energy transfer process is observed, coroborating that the conjugated system promotes the Dexter process and leads to an efficient transfer of energy from the donor to the acceptor. Finally, Chapter 7 presents the last work that is included in this thesis. Chapter 7 is entitled Excited State N-H Tautomer Selectivity in the Singlet Energy Transfer in a Zinc(II)Porphyrin-Truxene-Corrole Assembly and once again presents a very fast and efficient energy transfer process. In this work the energy transfer occurs between a Zn-porphyrin donor and a set to free-base corrole acceptors. The rapid energy transfer process exhibits a rate constant that falls in the same order of magnitude of those presented in the earlier chapters, suggesting that the process is occurring through the same dual mechanism that is Dexter dominated. Interestingly, in this last the energy transfer process was found to occur selectively to only one of the two corrole tautomeric species. This prompted an investigation into the excited state tautomerization rates of the free base corrole and lead to the first report of an experimentally measured tautomerization rate from free-base corrole. This thesis closes with a general discussion of the works presented within its pages and a discussion of the impact that the results have on the scientific community. / Les transferts d’énergie entre les états excités de chromophores est un sujet d’intérêt dans le domaine des dispositifs photovoltaïques naturelles ou artificielles. En effet, le transfert d’énergie est un processus que l’on observe dans la nature au sein de tous les organismes phototrophes depuis les végétaux multicellulaires complexes jusqu’aux bactéries unicellulaires photosynthétiques. Par exemple, dans le cas des bactéries photosynthétiques pourpres, ces dernières utilisent un photosystème de deux protéines assemblées, la première étant appelé protéine collectrice de lumière 1 (LH1 pour light-harvesting protein 1) et la seconde appelé protéine collectrice de lumière 2 (LH2 pour light-harvesting protein 2) afin de capter suffisamment d’énergie lumineuse pour assurer leur survie. La protéine LH2 n’a pour vocation que d’absorber et de transmettre l’énergie lumineuse à la protéine LH1, qui contient une paire spéciale dans un centre réactionnel. Les transferts d’énergie sont des phénomènes essentiels à la survie des organismes. Un photon absorbé par une molécule de type bactériochlorophylle dans la protéine LH2 subira un transfert d’énergie efficace à d’autres bactériochlorophylles au sein de la même structure protéique. Les transferts d’énergie se dérouleront aussi bien entre différentes protéines LH2 qu’entre des protéines LH1 et LH2. Ces processus de transfert d’énergie servent à canaliser l’énergie lumineuse jusqu’au centre réactionnel qui devient à son tour excité par transfert d’énergie. Ces processus sont hautement efficaces et essentiels à la survie de l’organisme en question. En science des matériaux, la conception d'un assemblage donneur-accepteur, covalent ou non, qui présente un transfert d'énergie efficace est un sujet d'intérêt pour des applications en photovoltaïque et diodes émettrices de lumière. En utilisant les bactéries pourpres photosynthétiques comme modèle, des structures similaires étudiant différents colorants permettant d'absorber et de transmettre de l'énergie lumineuse à un squelette central (un processus appelé effet antenne) font l'objet de recherches actives. Le principe étant que l'utilisation de ces antennes permet d'absorber plus de lumière dans les régions du spectre électromagnétique qu’il serait impossible d’obtenir avec un seul colorant. La conséquence est que, pour que le processus fonctionne efficacement, le transfert d'énergie entre l'antenne et le squelette doit être rapide, et parfois contrôlé. Dans ce travail, nous étudierons les processus de transfert d'énergie entre des colorants oligopyrroliques reliés par un noyau truxène, qui montre une similarité structurale avec le graphène. L'objectif du travail est de mieux comprendre les processus de transfert d'énergie entre les chromophores. Nous montrerons dans notre travail que la présence d'un système conjugué entre le donneur et l'accepteur ouvre la porte à l’hypothèse de la présence d'un double processus de transfert d'énergie régi par les mécanismes Förster et Dexter. Nous démontrerons que l'utilisation de ce système conjugué conduit à un processus de transfert d'énergie très rapide malgré la distance importante séparant le donneur et l’accepteur. Nous démontrerons en outre que le processus, bien qu'il s'agisse d'un double processus, est dominé par le processus Dexter grâce au système conjugué reliant le donneur et l'accepteur qui fait office de pont communiquant. Les processus de transfert d'énergie rapides et efficaces suggèrent que, pour tirer pleinement parti de l'effet antenne dans des applications photovoltaïques, les designs devraient être basés sur l'utilisation de ponts conjugués reliant donneurs et accepteurs. Le travail présenté dans cette thèse est divisé en huit sections. Dans l'introduction, une brève description des chromophores utilisés tout au long du présent travail sera fournie avec des concepts généraux non-exhaustifs pour la théorie de la fonctionnelle de la densité (DFT) qui a été utilisé comme outil tout au long des travaux actuels pour démontrer un certain degré de couplage orbitalaire. Le chapitre 1, intitulé Les principes fondamentaux de la photophysique, proposera une introduction à la théorie nécessaire à la bonne compréhension des travaux présentés dans cette thèse. Le chapitre 2 est simplement intitulé Instrumentation et fournira une description des instruments utilisés tout au long des travaux. Au chapitre 3: « Maple™-Assisted Calculations of the J-integral: A Key Parameter for the Understanding of Excited State Energy Transfer in Porphyrins and other Chromophores », une description détaillée de l'intégrale J ainsi qu’un outil pour le calcul à partir de données spectrales seront exposés. L'étude des processus de transfert d'énergie entre les chromophores pontés par truxène commencera au chapitre 4: « Origin of the Temperature Dependence of the Rate of Singlet Energy Transfer in a Three-Component Truxene-bridged Dyads ». Dans ce chapitre, nous étudierons le transfert d'énergie entre un donneur de type zinc(II)-porphyrine et un ensemble d'accepteurs de porphyrine base libre. Des preuves circonstancielles indiquant que le processus de transfert d'énergie observé se produit à travers un double mécanisme qui peut être dominé par le mécanisme Dexter seront présentées. Le Chapitre 5: « Antenna Effect in Truxene-bridged BODIPY Triarylzinc(II)porphyrin Dyads: Evidence for a Dual Dexter-Förster Mechanism » présentera quant à lui l'étude des processus de transfert d'énergie entre un donneur BODIPY et deux accepteurs de type Zn-porphyrine. Dans ce chapitre, la comparaison du processus de transfert d'énergie à une dyade similaire qui contient un pont non-conjugué entre le donneur et l'accepteur sera effectuée et il sera démontré que la dyade ponté par truxène présente non seulement un taux plus rapide, mais que ce taux ne peut être expliqué que par un processus Dexter dominant. Au chapitre 6 : « Very Fast Singlet and Triplet Energy Transfers in a Tri-chromophoric Porphyrin Dyad Aided by the Truxene Platform », l'étude du transfert d'énergie entre une porphyrine de palladium(II) donneuse et une paire d'accepteurs de type zinc(II)-porphyrine pontés par un noyau de truxène sera montré. Ici, un processus de transfert d'énergie triplet très rapide est observé, ce qui prouve que le système conjugué favorise le processus Dexter et conduit à un transfert efficace d'énergie du donneur vers l'accepteur. Enfin, le chapitre 7 présentera le dernier travail inclus dans cette thèse. Le chapitre 7 est intitulé « Excited State N-H Tautomer Selectivity in the Singlet Energy Transfer in a Zinc(II)Porphyrin-Truxene-Corrole Assembly » et exposera une dernière fois un processus de transfert d'énergie très rapide et efficace. Dans ce travail, le transfert d'énergie se produit entre un donneur de type Zn-porphyrine et une corrole base libre acceptrice. Le processus de transfert d'énergie rapide présente une constante de vitesse qui se situe dans le même ordre de grandeur que ceux présentés dans les chapitres précédents, ce qui suggère que le processus se produit par le biais du même double mécanisme dominé par Dexter. Il est intéressant de noter que, dans ce dernier cas, le processus de transfert d'énergie s'est révélé sélectif sur l'une des deux espèces tautomériques du corrole. Ceci a mené à une étude sur les taux de tautomérisation de l'état excité de la corrole base libre conduisant à la premier mesure expérimentale du taux de tautomérisation de la corrole base libre. Cette thèse s’achèvera par une discussion générale sur les travaux présentés dans ces pages ainsi que sur l'impact que les résultats ont eus dans communauté scientifique dans ce domaine.
3

Molécules conjugées en étoile à base d'azophénine : synthèse et caractérisation photophysique / Azophenine-based star-shaped conjugated molecules: synthesis and photophysical investigation

Hu, Lei January 2017 (has links)
Cette thèse présente la conception, la synthèse et l'étude photophysique de divers dérivés d'azophénine comme modèles structurels mono-bloc pour l'éméraledine qui est une forme de polyaniline à valence mixte. L'azophénine est une molécule conjuguée en forme d'étoile contenant à la fois des résidus de quinone diimine et de phénylamine tous deux contenus dans l'émeraldine. Cependant l'azophénine et l'émeraldine sont tout deux reconnus pour ne pas être émissifs. Le défi était alors de donner des propriétés d’émissions à l'azophénine à température ambiante avant toute investigation photophysique. L'objectif à long terme étant de rendre la polyaniline, connu pour être peu dispendieuse, attractive en tant que matériau donneur efficace dans une cellule solaire de type « bulk-heterojunction ». En raison des problèmes de faible solubilité des polymères, l'utilisation de modèles beaucoup plus soluble est une nécessité. Les modifications structurelles considérées comprennent l'ancrage des fonctions pontées d'éthynyle en position para- des quatre groupes phényls d'azophénine. Ces fonctions sont des groupes aromatiques encombrés de type truxène, des composés organométalliques trans-bis(trialkylphosphine) platine(II), des colorants de porphyrines de zinc(II) et de Bodipy. Elles présentent toutes une fluorescence ou une phosphorescence, signal pouvant être utilisé pour mesurer les interactions électroniques entre ces groupements et le noyau central. Leurs propriétés photophysiques sont étudiées en détail en utilisant la spectroscopie d'absorption et d'émission UV-Visible stationnaire et ultra-rapide résolue dans le temps. La DFT et la TDDFT sont également utilisés pour les optimisations des géométries (DFT) et pour déterminer la nature et les positions de l'absorption de la bande de transfert de charge (TDDFT). Le chapitre 2 présente la synthèse et la caractérisation d'un dérivé en étoile d'azophénine autour d’un noyeau truxène appelé TertTruQ. Le couplage de résidus encombrés de truxène avec de l'azophénine a amélioré l'activité photophysique du premier niveau singulet de ce dérivé à 77 K. Les hypothèses étant que le taux de désactivation non radiatif a diminué les rotations autour des axes des liaisons C-N en raison de la taille du truxène. De plus, cette nouvelle azophénine substituée s'est révélée être fluorescente à l'état solide à température ambiante. En raison de ces nouvelles observations, les propriétés d'émission des dérivés de l’éméraldine sont réexaminées. Une fluorescence faible à ~ 780 nm à 77 K, confirmée par le spectre d'excitation, a démontré la présence d'une faible émission de type fluorescence CT dans le proche-IR pour TertTruQ. Nous pouvons en conclure que l'azophénine fournit un modèle utile pour identifier quelle modification structurelle simple peut être effectuée pour rendre l’éméraldine émissive, si possible à température ambiante. De plus, lorsqu'une espèce non luminescente devient émissive, ce changement s'accompagne d'une augmentation de sa durée de vie à l’état excitée, propriétés recherchées pour des applications dans le domaine des cellules solaires. Ce travail a été publié dans Physical Chemistry Chemical Physics, 2017, 19, 21532-21539. Le chapitre 3 décrit la synthèse et la caractérisation des azophénines contenant du trans-bis(trialkylphosphine)diéthynyl-platine(II) formant les dérivés di- et tétra-substitués DiTruPtQ et TertTruPtQ. Les deux complexes présentent une fluorescence et une phosphorescence des "bras" organométalliques à 298 K en solution. En outre, l'effet d'atome lourd du platine permet d'explorer les propriétés de l’état triplet de l'azophénine. Cependant, la phosphorescence recherchée de l'état triplet CT n'a pas été considérée probablement en raison des processus rapides non radiatifs. Ce travail a été publié dans Organometallics, 2017, 36(3), 572-581. Le chapitre 4 présente l'effet du remplacement des ions H+ labiles sur le fragment HN^N par des fragments BF2+ pour former des cycles, fournissant ainsi un cadre plus rigide pour l'azophénine. En effet, la fluorescence CT proche-IR a été observée à 298 et 77 K. Cependant, malgré la présence de Pt dans les groupes pendants, aucune phosphorescence n'a été détectée. Les calculs de DFT ont suggéré que l'état triplet de plus faible énergie était très faible (0,975 eV (BQ) et 0,84 eV (TertPtBQ)) induisant une plus grande probabilité de processus non radiatifs, depeuplant ainsi efficacement l'état triplet. Ce travail a été accepté à Inorganic Chemistry, 2017. Le chapitre 5 présente les colorants fluorescents de porphyrine de zinc(II) et BODIPY bien connus, qui ont été liés à l'azophénine pour former DiBodipyQ, TertBodipyQ et PorBodipyQ. Le spectre d'absorption des BODIPY se situe dans une gamme où la porphyrine n'absorbe pas beaucoup. Ainsi, la combinaison de ces deux chromophores avec la formation d'une bande de CT faible permet d'améliorer la collecte du rayonnement solaire. Par conséquent, il était important de vérifier que l'énergie collectée pourrait facilement être transférée d'un chromophore à l'autre. En effet, on a observé 1BODIPY * → 1porphyrine zinc(II) et 1BODIPY * → 1CT (azophénine) avec une désactivation efficace de 1porphyrine zinc(II) ~~> 1CT (azophénine). Ce travail a été soumis à Chemistry: A European Journal. / Abstract: This thesis presents the design, synthesis and photophysical investigation of various azophenine derivatives as “one unit” structural models for emeraldine, a mixed-valence form of polyaniline. Azophenine is a star-shaped cross-conjugated molecule containing both quinone diimine and phenyl amine residues included in emeraldine but both, azophenine and emeraldine, are reported notoriously non-emissive. The challenge was to render azophenine emissive at room temperature prior any photophysical investigation. The long-term objective is to render polyaniline, in one form or the other, useful in bulk heterojunction solar cell in the active layer as it is not expensive. Because of solubility issues, the use of models becomes very appealing. The considered structural modifications include the anchoring of ethynyl-bridged functions at the para-position of the four phenyl groups of azophenine. These functions are the bulky truxene aromatic, the organometallic trans-bis(trialkylphosphine)platinum(II) pendent groups, and zinc(II)porphyrin and BODIPY dyes. All these functions exhibit fluorescence or phosphorescence, signal that can be used to monitor any electronic interaction between these pendent groups and the central core. Their photophysical properties were investigated in detail using steady-state and ultrafast time-resolved UV-vis absorption and emission spectroscopy. DFT and TDDFT were also employed for geometry optimizations (DFT) and nature and positions of the CT absorption (TDDFT). Chapter 2 introduces the synthesis and characterization of a truxene-based star-shaped azophenine derivative called TertTruQ. The coupling of bulky truxene residues with azophenine improved the photophysical activity of the lowest energy singlet excited state (i.e. CT state) of this derivative at 77 K. Speculations are that the rate for non-radiative deactivation, namely internal conversion, decreased upon slowing down the rotations around the N-C bonds due to the size of truxene. Moreover, this new substituted azophenine turned out to be fluorescent in the solid state at room temperature. Because of these interesting new observations, the emission properties of emeraldine base form were re-examined. A weak fluorescence at ~780 nm at 77 K, confirmed by the excitation spectrum, demonstrated the presence a CT near-IR fluorescence for TertTruQ. Thus, azophenine provides a useful model to identify what simple structural modification that can be performed to render emeraline emissive, if possible at room temperature. Again, when a non-luminescent species becomes emissive, this change is accompanied by an increase of its excited state lifetime. Longer excited state lifetimes are more prone to solar cell applications. This work has been published in Physical Chemistry Chemical Physics, 2017. Chapter 3 describes the synthesis and characterization of trans-bis(trialkylphosphine)diethynyl-platinum(II)-containing azophenines forming the di- and tetra-substituted derivatives DiTruPtQ and TertTruPtQ. Both complexes exhibit fluorescence and phosphorescence of the organometallic “arms” at 298 K in fluid solution. Moreover, the heavy atom effect of platinum gave the possibility of exploring the triplet state properties of azophenine. However, the sought phosphorescence from the triplet CT state was not seen most presumably due to the fast non-radiative processes. This work has been published in Organometallics, 2017, 36(3), 572-581. Chapter 4 presents the effect of the replacement of the labile H+ ions on the HN^N moiety by BF2+ fragments to form cycles thus providing a more rigid framework for azophenine. Indeed, the CT near-IR fluorescence was observed both at 298 and 77 K. However, despite the presence of Pt in the pendent groups, no phosphorescence was detected. DFT computations suggested that the low-lying triplet state was very low (0.975 (BQ) and 0.84 eV) inducing a higher probability of non-radiative processes thus efficiently depleting the triplet state. This work has been submitted to Inorganice Chemistry. Chapter 5 introduces the well-known BODIPY and zinc(II)porphyrin fluorescent dyes, which were linked to azophenine to form DiBodipyQ, TertBodipyQ and PorBodipyQ. The absorption spectrum of Bodipy lies in a range where porphyrin does not absorb very much. So, the combination of these two chromophores along with the formation of a low-lying CT band improves the light collection of the solar radiation. Consequently, it was important to verify that the collected energy could easily transferred from one chromophore to another. Indeed, the 1Bodipy* → 1zinc(II)porphyrin and 1Bodipy* → 1CT(azophenine) were observed along with an efficient deactivation from 1zinc(II)porphyrin ~~> 1CT(azophenine).

Page generated in 0.0303 seconds