• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extending Moore’s Law for Silicon CMOS using More-Moore and More-than-Moore Technologies

Hussain, Aftab M. 12 1900 (has links)
With the advancement of silicon electronics under threat from physical limits to dimensional scaling, the International Technology Roadmap for Semiconductors (ITRS) released a white paper in 2008, detailing the ways in which the semiconductor industry can keep itself continually growing in the twenty-first century. Two distinct paths were proposed: More-Moore and More-than-Moore. While More-Moore approach focuses on the continued use of state-of-the-art, complementary metal oxide semiconductor (CMOS) technology for next generation electronics, More-than-Moore approach calls for a disruptive change in the system architecture and integration strategies. In this doctoral thesis, we investigate both the approaches to obtain performance improvement in the state-of-the-art, CMOS electronics. We present a novel channel material, SiSn, for fabrication of CMOS circuits. This investigation is in line with the More-Moore approach because we are relying on the established CMOS industry infrastructure to obtain an incremental change in the integrated circuit (IC) performance by replacing silicon channel with SiSn. We report a simple, low-cost and CMOS compatible process for obtaining single crystal SiSn wafers. Tin (Sn) is deposited on silicon wafers in the form of a metallic thin film and annealed to facilitate diffusion into the silicon lattice. This diffusion provides for sufficient SiSn layer at the top surface for fabrication of CMOS devices. We report a lowering of band gap and enhanced mobility for SiSn channel MOSFETs compared to silicon control devices. We also present a process for fabrication of vertically integrated flexible silicon to form 3D integrated circuits. This disruptive change in the state-of-the-art, in line with the More-than-Moore approach, promises to increase the performance per area of a silicon chip. We report a process for stacking and bonding these pieces with polymeric bonding and interconnecting them using copper through silicon vias (TSVs). We report a process for fabricating through polymer vias (TPVs) facilitating the fabrication of sensor arrays and control electronics on the opposite sides of the same flexible polymer. Finally, we present a process to fabricate stretchable metallic thin films with up to 800% stretchability, and report two distinct applications for these devices which cannot be done using current techniques.
2

Conception en vue du Test des Circuits Intégrés 3D à base de TSVs / Design for Test of TSV Based 3D Stacked Integrated Circuits

Fkih, Yassine 14 November 2014 (has links)
Depuis plusieurs années, la complexité des circuits intégrés ne cesse d'augmenter : du SOC (System On Chip) vers le SIP (System In Package), et plus récemment les circuits empilés en 3D : les 3D SIC (Stacked Integrated Circuits) à base de TSVs (Through Silicon Vias) interconnectant verticalement les tiers, ou puces, du système. Les 3D SIC présentent de nombreux avantages en termes de facteur de forme, de performance et de consommation mais demandent aussi de relever de nombreux défis en ce qui concerne leur test, étape nécessaire avant la mise en service de ces systèmes complexes. Dans cette thèse, nous nous attachons à définir les infrastructures de test qui permettront de détecter les éventuels défauts apparaissant lors de la fabrication des TSVs ou des différentes puces du système. Nous proposons une solution de BIST (Built In Self Test) pour le test avant empilement des TSVs. Cette solution est basée sur l'utilisation d'oscillateurs en anneaux dont la fréquence d'oscillation dépend des caractéristiques électriques des TSVs. La solution de test proposée permet non seulement la détection de TSVs fautifs mais aussi de renseigner sur le nombre d'éléments défectueux et leur identification. D'autre part, nous proposons une architecture de test 3D basée sur la nouvelle proposition de norme IEEE P1687. Cette infrastructure permet de donner accès aux composants du système 3D avant et après empilement. Elle permet d'autre part de profiter du recyclage des données de test développées et appliquées avant empilement pour chacun des tiers puis ré-appliqués durant ou après l'empilement. Ces travaux aboutissent finalement à l'ouverture d'une nouvelle problématique liée à l'ordonnancement des tests sous contraintes (puissance consommée, température).Mots-clés : test, circuits 3D, TSV, BIST, oscillateur en anneau, architecture de test 3D, IEEE P1687, test avant empilement, test après empilement. / For several years, the complexity of integrated circuits continues to increase, from SOC (System On Chip) to SIP (System In Package) , and more recently 3D SICs (Stacked Integrated Circuits) based on TSVs (Through Silicon Vias ) that vertically interconnect stacked circuits in a 3D system. 3D SICs have many advantages in terms of small form factor, high performances and low power consumption but have many challenges regarding their test which is a necessary step before the commissioning of these complex systems. In this thesis we focus on defining the test infrastructure that will detect any occurring defects during the manufacturing process of TSVs or the different sacked chips in the system. We propose a BIST (Built In Self Test) solution for TSVs testing before stacking, this solution is based on the use of ring oscillators which their oscillation frequencies depend on the electrical characteristics of the TSVs. The proposed test solution not only allows the detection of faulty TSVs but also gives information about the number of defective TSVs and their location. On the other hand, we propose a 3D DFT (Design For Test) architecture based on the new proposed test standard IEEE P1687. The proposed test architecture provides test access to the components of the 3D system before and after stacking. Also it allows the re-use of recycled test data developed and applied before stacking to each die in the mid-bond and post-bond test levels. This work lead to the opening of a new problem related to the test scheduling under constraints such as: power consumption, temperature.Keywords: test, 3D circuits, TSV, BIST, ring oscillators, 3D DFT architecture, IEEE P1687, pre-bond test, post-bond test.
3

Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems

Bleiker, Simon J. January 2017 (has links)
Three-dimensional (3D) integration of micro- and nano-electromechanical systems (MEMS/NEMS) with integrated circuits (ICs) is an emerging technology that offers great advantages over conventional state-of-the-art microelectronics. MEMS and NEMS are most commonly employed as sensor and actuator components that enable a vast array of functionalities typically not attainable by conventional ICs. 3D integration of NEMS and ICs also contributes to more compact device footprints, improves device performance, and lowers the power consumption. Therefore, 3D integration of NEMS and ICs has been proposed as a promising solution to the end of Moore’s law, i.e. the slowing advancement of complementary metal-oxide-semiconductor (CMOS) technology.In this Ph.D. thesis, I propose a comprehensive fabrication methodology for heterogeneous 3D integration of NEM devices directly on top of CMOS circuits. In heterogeneous integration, the NEMS and CMOS components are fully or partially fabricated on separate substrates and subsequently merged into one. This enables process flexibility for the NEMS components while maintaining full compatibility with standard CMOS fabrication. The first part of this thesis presents an adhesive wafer bonding method using ultra-thin intermediate bonding layers which is utilized for merging the NEMS components with the CMOS substrate. In the second part, a novel NEM switch concept is introduced and the performance of CMOS-integrated NEM switch circuits for logic and computation applications is discussed. The third part examines two different packaging approaches for integrated MEMS and NEMS devices with either hermetic vacuum cavities or low-cost glass lids for optical applications. Finally, a novel fabrication approach for through silicon vias (TSVs) by magnetic assembly is presented, which is used to establish an electrical connection from the packaged devices to the outside world. / Tredimensionell (3D) integration av mikro- och nano-elektromekaniska system (MEMS/NEMS) med integrerade kretsar (ICs) är en ny teknik som erbjuder stora fördelar jämfört med konventionell mikroelektronik. MEMS och NEMS används oftast som sensorer och aktuatorer då de möjliggör många funktioner som inte kan uppnås med vanliga ICs.3D-integration av NEMS och ICs bidrar även till mindre dimensioner, ökade prestanda och mindre energiförbrukning av elektriska komponenter. Den nuvarande tekniken för complementary metal-oxide-semicondictor (CMOS) närmar sig de fundamentala gränserna vilket drastiskt begränsar utvecklingsmöjligheten för mikroelektronik och medför slutet på Moores lag. Därför har 3D-integration identifierats som en lovande teknik för att kunna driva vidare utvecklingen för framtidens elektriska komponenter.I denna avhandling framläggs en omfattande fabrikationsmetodik för heterogen 3D-integration av NEMS ovanpå CMOS-kretsar. Heterogen integration betyder att både NEMS- och CMOS-komponenter byggs på separata substrat för att sedan förenas på ett enda substrat. Denna teknik tillåter full processfrihet för tillverkning av NEMS-komponenter och garanterar kompatibilitet med standardiserade CMOS-fabrikationsprocesser.I den första delen av avhandlingen beskrivs en metod för att sammanfoga två halvledarskivor med en extremt tunn adhesiv polymer. Denna metod demonstreras för 3D-integration av NEMS- och CMOS-komponenter. Den andra delen introducerar ett nytt koncept för NEM-switchar och dess användning i NEM-switch-baserade mikrodatorchip. Den tredje delen presenterar två olika inkapslingsmetoder för MEMS och NEMS. Den ena metoden fokuserar på hermetisk vakuuminkapsling medan den andra metoden beskriver en lågkostnadsstrategi för inkapsling av optiska komponenter. Slutligen i den fjärde delen presenteras en ny fabrikationsteknik för så kallade ”through silicon vias” (TSVs) baserad på magnetisk självmontering av nickeltråd på mikrometerskala. / <p>20170519</p>

Page generated in 0.0477 seconds