• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 11
  • 11
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tunable diode lasers and their applications in trace gas and liquid detection /

Zhu, Xiang. January 1996 (has links)
Thesis (Ph.D.) -- McMaster University, 1997. / Includes bibliographical references (leaves 91-97). Also available via World Wide Web.
12

Microwave signal generation using self-heterodyning of a fast wavelength switching SG-DBR laser : a thesis /

Bernacil, Michael A.. Derickson, Dennis. January 2008 (has links)
Thesis (M.S.)--California Polytechnic State University, 2008. / Major professor: Dennis Derickson, Ph.D. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in Electrical Engineering." "May 2008." Includes bibliographical references (leaves 147-149). Also available on microfiche (3 sheets).
13

Tunable diode laser trace gas detection with a vertical cavity surface emitting laser

Vujanic, Dragan. January 2009 (has links)
Thesis (M. Sc.)--University of Alberta, 2009. / Title from PDF file main screen (viewed on Oct. 19, 2009). A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science, Department of Electrical and Computer Engineering, University of Alberta. Includes bibliographical references.
14

Fiber Bragg grating-tunable diode laser /

Ericksen, Doug. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2006. / Printout. Includes bibliographical references (leaves 50-54). Also available on the World Wide Web.
15

Tunable multiwavelength picosecond pulses generated from a fabry-perot laser diode.

January 1998 (has links)
by Sui-Pan Yam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references. / Abstract also in Chinese. / Acknowledgements --- p.V / Abstract --- p.VI / Chapter Chapter 1 --- Introduction --- p.1-1 / Chapter 1.1) --- Tunable Multi-Wavelength Optical Sources --- p.1 -1 / Chapter 1.2) --- All-Optical Switching --- p.1 -3 / Chapter 1.2.1) --- Nonlinear Effect / Chapter 1.2.2) --- Special Design of the Laser Structure / Chapter 1.2.3) --- Self-Injection Seeding of Fabry-Perot Laser Diode / Chapter 1.3) --- About This Project --- p.1-6 / Chapter Chapter 2 --- Basic Theory --- p.2-1 / Chapter 2.1) --- Mechanism of Gain-Switching --- p.2-1 / Chapter 2.1.1) --- General Description / Chapter 2.1.2) --- "Optical Pulsewidth, Spectra, and Frequency Chirping of Gain-Switched Pulses" / Chapter 2.2) --- Mechanism of Self-Injection Seeding --- p.2-8 / Chapter 2.2.1) --- General Description / Chapter 2.2.2) --- Dynamics of Single-Mode Formation / Chapter 2.2.3) --- Frequency Evolution of the Laser Diode for Cavity Mode Selection / Chapter 2.2.4) --- Turn-On Delay Time Jitter (TOJ) / Chapter 2.3) --- Mechanism of Injection Seeding --- p.2-17 / Chapter 2.3.1) --- General Description / Chapter 2.3.2) --- The Model of Weak Injection / Chapter 2.3.3) --- The Model of Strong Injection / Chapter Chapter 3 --- Single- and Multi-wavelength Optical Pulses Generated by a Diffraction Grating --- p.3-1 / Chapter 3.1) --- Introduction --- p.3-1 / Chapter 3.2) --- Basic Principle --- p.3-2 / Chapter 3.3) --- Experimental Setup --- p.3-5 / Chapter 3.4) --- Results and Discussion --- p.3-7 / Chapter 3.4.1) --- Spectral Characteristics Analysis / Chapter 3.4.2) --- Individually Access of the Four-Wavelength Output / Chapter 3.4.3) --- The Optical Pulsewidth Characteristics / Chapter 3.4.4) --- Discussion / Chapter 3.5) --- Summary --- p.3-14 / Chapter Chapter 4 --- Using a Highly Dispersive Fiber for Tunable Multi-Wavelength Pulse Generation --- p.4-1 / Chapter 4.1) --- Introduction --- p.4-1 / Chapter 4.2) --- Basic Principle --- p.4-2 / Chapter 4.3) --- Experimental Setup --- p.4-5 / Chapter 4.4) --- Experimental Results --- p.4-7 / Chapter 4.4.1) --- Spectral and Temporal Characteristics / Chapter 4.4.2) --- Wavelength Tuning / Chapter 4.4.3) --- Individually Access of Two Wavelength Channels / Chapter 4.4.4) --- Multi-Wavelength Generation / Chapter 4.5) --- Summary --- p.4-13 / Chapter Chapter 5 --- Comparison of Two Self-Seeding Configurations --- p.5-1 / Chapter 5.1) --- Introduction --- p.5-1 / Chapter 5.2) --- Polarization Sensitivity --- p.5-1 / Chapter 5.3) --- Stability --- p.5-2 / Chapter 5.4) --- Tunability --- p.5-2 / Chapter 5.5) --- Simplification --- p.5-3 / Chapter 5.6) --- Summary of the advantages and disadvantages of Two Configurations --- p.5-4 / Chapter Chapter 6 --- All-Optical Wavelength Switching achieved by Self-Seeding and External Injection-Seeding --- p.6-1 / Chapter 6.1) --- Introduction --- p.6-1 / Chapter 6.2) --- Experimental Setup --- p.6-2 / Chapter 6.3) --- Results and Discussion --- p.6-4 / Chapter 6.3.1) --- Spectral Characteristics / Chapter 6.3.2) --- The Optical Pulsewidth / Chapter 6.3.3) --- The Optical Switching Behaviors / Chapter 6.3.4) --- The Detail Information of Switching / Chapter 6.3.5) --- Optical Power / Chapter 6.4) --- Summary --- p.6-10 / Chapter Chapter 7 --- A Novel Self-Injection Seeding Scheme --- p.7-1 / Chapter 7.1) --- Introduction --- p.7-1 / Chapter 7.2) --- Basic Principle --- p.7-2 / Chapter 7.3) --- Experimental Setup --- p.7-9 / Chapter 7.4) --- Results and Discussion --- p.7-11 / Chapter 7.4.1) --- Spectral and Temporal Characterizations of Two-Wavelength Switching / Chapter 7.4.2) --- Different Wavelength Selection / Chapter 7.4.3) --- Operation Frequency Against the Fiber Length / Chapter 7.4.4) --- Multi-Wavelength Generation / Chapter 7.5) --- Discussion --- p.7-20 / Chapter 7.6) --- Summary --- p.7-22 / Chapter Chapter 8 --- Comparison of Switching Methods --- p.8-1 / Chapter 8.1) --- Introduction --- p.8-1 / Chapter 8.2) --- Switching between Self-Seeding and Injection-Seeding --- p.8-1 / Chapter 8.3) --- Switching by Self-Seeding of a F-P Laser Diode --- p.8-2 / Chapter 8.4) --- Summary --- p.8-3 / Chapter Chapter 9 --- Conclusion --- p.9-1 / References / Figure Captions / Appendix 一 Equipment Descriptions / List of Accepted and Submitted Publications
16

Generation and characterization of tunable multi-wavelength continuous-wave and picosecond-pulsed outputs from a semiconductor laser. / CUHK electronic theses & dissertations collection

January 1998 (has links)
by Ka-Suen Lee. / "June 1998." / Thesis (Ph.D.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
17

New schemes of picosecond pulse generation with broad tunability in wavelength and repetition rate. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Active mode locking is one of the simplest ways to generate picosecond pulses at gigahertz repetition rates. In my works, I demonstrate the generation of picosecond pulses with a center-wavelength spanning from 1489nm to 1589nm using a polarization maintaining fiber loop mirror filter (PMF-LMF) in a mode-locked semiconductor optical amplifier (SOA) ring laser. By applying the SOA gain shifting technique and with the help of the controllable transmission ratio of the PMF-LMF, the tuning range of the output wavelength can be extended. By applying the technique of dispersion tuning, electrical wavelength tuning can be achieved across a range of 100nm. / Compared to the active mode-locking method, the regenerative mode-locking is very convenient because it does not require any external source for modulation and is proved to be more robust against fluctuations in ambient temperature. We demonstrate a 10-GHz regeneratively mode-locked fiber laser using a PMF-LMF. The operating frequency is determined by the free-spectral-range of the PMF-LMF and the component is extracted optically from the ring laser output. / In addition, we also demonstrate a simple technique to generate wavelength tunable picosecond pulses at adjustable repetition rate without using electrical or optical RF filter to extract the radio frequency (RF). The RF signal for mode locking is generated from a Fabry-Perot laser diode (FP-LD) under optical injection. The output frequency can be varied by adjusting the biasing current of the FP-LD. (Abstract shortened by UMI.) / Picosecond optical pulse sources with broad tunability and various repetition rates are key elements for applications in wavelength- and time-division multiplexed optical transmission systems. Mode-locking is one of the main techniques for the generation of optical pulses with high repetition rate picosecond pulse trains. This thesis presents our research efforts in high repetition rate optical pulse generation using active and regenerative mode-locking techniques, and a self-starting approach. We also demonstrate the application of harmonic mode locking in all-optical clock recovery from NRZ data. / Tang Wing Wa. / "August 2005." / Adviser: C. T. Shu. / Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 4015. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
18

Development of new thickness measurement system with high lateral resolution

Ho, Ji-Bin 17 July 2012 (has links)
In this thesis, with external cavity semiconductor laser, a high lateral resolution thickness measurement is proposed and demonstrated. The approach is typical an intra-cavity measurement of focused cell thickness by wavelength tuning of an external cavity laser diode. In addition, using blue light of 406nm as laser diode, higher lateral resolution is also observed. Using the proposed thickness method, the lateral resolution and longitudinal resolution have been demonstrated with 20£gm and 0.15£gm, respectively. We also discuss the feasibility of £gm scaled lateral resolution through improvement of laser diode, such as M^2~1.
19

Near-ir tunable diode laser absorption spectroscopy of gaseous pollutants

陳潔瑩, Chan, Kit-ying, Anna. January 1998 (has links)
published_or_final_version / Chemistry / Master / Master of Philosophy
20

Development of method for measurement of passive losses in Cr²⁺:ZnSe and Cr²⁺:ZnS laser crystals using polarized laser beam

Arumugam, Anitha. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2008. / Description based on contents viewed Feb. 10, 2009; title from PDF t.p. Includes bibliographical references (p. 33).

Page generated in 0.049 seconds