• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Holocene vegetational history of the central Arctic foothills, northern Alaska : pollen representation of tundra and edaphic controls on the response of tundra to climate change /

Oswald, William Wyatt. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 100-117).
2

Plant traits as predictors of ecosystem change and function in a warming tundra biome

Thomas, Haydn John David January 2018 (has links)
The tundra is currently warming twice as rapidly as the rest of planet Earth, which is thought to be leading to widespread vegetation change. Understanding the drivers, patterns, and impacts of vegetation change will be critical to predicting the future state of tundra ecosystems and estimating potential feedbacks to the global climate system. In this thesis, I used plant traits - the characteristics of individuals and species - to investigate the fundamental structure of tundra plant communities and to link vegetation change to decomposition across the tundra biome. Plant traits are increasingly used to predict how communities will respond to environmental change. However, existing global trait relationships have largely been formulated using data from tropical and temperature environments. It is thus unknown whether these trait relationships extend to the cold extremes of the tundra biome. Furthermore, it is unclear whether approaches that simplify trait variation, such as the categorization of species into functional groups, capture variation across multiple traits. Using the Tundra Trait Team database - the largest tundra trait database ever compiled - I found that tundra plants revealed remarkable consistency in the range of resource acquisition traits, but not size traits, compared to global trait distributions, and that global trait relationships were maintained in the tundra biome. However, trait variation was largely expressed at the level of individual species, and thus the use of functional groups to describe trait variation may obscure important patterns and mechanisms of vegetation change. Secondly, plant traits are related to several key ecosystem functions, and thus offer an approach to predicting the impacts of vegetation change. Notably, understanding the links between vegetation change and decomposition is a critical research priority as high latitude ecosystems contain more than 50% of global soil carbon, and have historically formed a long-term carbon sink due to low decomposition rates and frozen soils. However, it is unclear to what extent vegetation change, and thus changes to the quality and quantity of litter inputs, drives decomposition compared to environmental controls. I used two common substrates (tea), buried at 248 sites, to quantify the relative importance of temperature, moisture and litter quality on litter decomposition across the tundra biome. I found strong linear relationships between decomposition, soil temperature and soil moisture, but found that litter quality had the greatest effect on decomposition, outweighing the effects of environment across the tundra biome. Finally, I investigated whether tundra plant communities are undergoing directional shifts in litter quality as a result of climate warming. Given the importance of litter quality for decomposition, a shift towards more or less decomposable plant litter could act as a feedback to climate change by altering decomposition rates and litter carbon storage. I combined a litter decomposition experiment with tundra plant trait data and three decades of biome-wide vegetation monitoring to quantify change in community decomposability over space, over time and with warming. I found that community decomposability increased with temperature and soil moisture over biogeographic gradients. However, I found no significant change in decomposability over time, primarily due to low species turnover, which drives the majority of trait differences among sites. Together, my thesis findings indicate that the incorporation of plant trait data into ecological analyses can improve our understanding of tundra vegetation change. Firstly, trait-based approaches capture variation in plant responses to environmental change, and enable prediction of vegetation change and ecosystem function at large scales and under future growing conditions. Secondly, my findings offer insight into the potential direction, rate and magnitude of vegetation change, indicating that despite rapid shifts in some traits, the majority of community-level trait change will be dependent upon the slower processes of migration and species turnover. Finally, my findings demonstrate that the impact of warming on both tundra vegetation change and ecosystem processes will be strongly mediated by soil moisture and trait differences among vegetation communities. Overall, my thesis demonstrates that the use of plant traits can improve climate change predictions for the tundra biome, and informs the fundamental rules that determine plant community structure and change at the global scale.
3

Anthropogenic tundra disturbance and patterns of response in the eastern Canadian Arctic

Forbes, Bruce Cameron January 1993 (has links)
The literature of disturbance ecology reveals that, under present climatic conditions, non-native plants have little or no role in high arctic tundra revegetation. Rather, it has been suggested that indigenous flora, especially long-lived perennial graminoids, are crucial to recovery. However, few long-term data are available on past impacts within productive sedge-meadows in the High Arctic, and none which consider the non-vascular flora. / This thesis combines biogeographical and patch dynamics perspectives to focus on $ geq$21 yr of natural and assisted recovery of vegetation and soils from a wide range of dated anthropogenic surface disturbances at three Canadian Arctic sites. Empirical, experimental and archival investigations were made among climatically similar, but widely disjunct, coastal lowlands of contrasting geologies on Baffin, Devon, and Cornwallis Islands. These data encompass minerotrophic and oligotrophic wetlands in which the vascular floras show minimal differentiation yet the sampled bryofloras share only 31.8% of their total taxa. The occurrences chosen for study are representative of the most widespread, small-scale human impacts in the North, including vehicular, pedestrian, construction, and pollution disturbances. / It was determined that rutting from even a single passage of a tracked vehicle in summer resulted in significant reductions in species richness and biomass. On slopes $ geq$2$ sp circ$, these same small ruts have drained large areas of peatlands, a serious cumulative impact. Long-term effects of drainage include the local extinction of populations of Sphagnum spp. and rhizomatous vascular aquatics, and changes in the chemistry and thermal regime of drained mineral soils. Other effects include significant changes in biomass and the concentrations of macronutrients in the leaves of dominant species. These effects were magnified in peatlands drained where multi-pass vehicle movements occurred. / Species richness displayed an inverse relationship with trampling intensity and the soils of heavily trampled ground remained severely compacted after 21 years. These patches were dominated by dense swards of ruderal grasses. Nutrient concentrations in the leaves of the latter and other colonizing and surviving species tended to increase with trampling intensity. Trampled patches and archaeological sites appeared selectively grazed by several herbivores. Although humans initiated the disturbances within these patches, it is the animals which are responsible for many of the dynamics of patch change over the long-term. / Classification and ordination procedures revealed linkages between the floristic associations of trampled meadows on Baffin Island and archaeological sites on Devon and Cornwallis Islands. One critical implication is that even low levels of human impact may give rise to ruderal plant communities which are extremely persistent. These patches are poor in terms of species richness, but contribute to habitat heterogeneity at the landscape level and comprise preferred forage for local vertebrate herbivores. / Archaeological excavation and restoration revealed that at least some stores of viable seed exist in both mesic and wet tundra soils and point to the importance of initial floristic composition (sensu Egler 1954). From a long-term perspective, the data establish that mesic tundra vegetation and soils are easily disturbed and recover much more slowly than their low arctic counterparts under similar disturbance regimes.
4

Anthropogenic tundra disturbance and patterns of response in the eastern Canadian Arctic

Forbes, Bruce Cameron January 1993 (has links)
No description available.
5

Reindeer grazing, soil wetness and aspect interact to drive tundra plant community structure in northern Sweden

Gemal, Emma January 2023 (has links)
The relative importance of abiotic versus biotic top-down factors on structuring tundra plant communities is debated. With climate change already strongly affecting the tundra ecosystem, understanding which factors will prevail is vital. Tundra plant communities are presumed to be predominantly structured by their abiotic conditions yet grazing by reindeer (Rangifer tarandus) has a major effect on composition and diversity. It is increasingly recognized, however, that these factors cannot be considered in isolation. Here, I aim to test the relative and interactive effect of abiotic and top- down factors on vegetation structure in the Swedish mountain tundra. Using direct measurements of reindeer grazing via tri-axial accelerometers (from two summers, 2019 and 2020) coupled with remotely-gathered data on landscape features, I examine how species richness and coverage of vascular plants, bryophytes and lichens (sampled in 2022) are driven by grazing duration and abiotic conditions. Abiotic factors, specifically aspect and soil wetness, prevailed as the dominant drivers of local vegetation patterns. Clear interactions between factors were also observed. Reindeer grazing duration had predictable but weak effects on richness, with responses predominantly observed on south-facing slopes. Additionally, soil wetness interacted with grazing duration, with wetter areas grazed far less. These results demonstrate the importance of considering interactions between abiotic and biotic factors, providing a better understanding of how tundra plant communities in northern Sweden might change under future climate change or different grazing regimes. The observed interactions imply divergence in vulnerability between slopes and the potential for effects of herbivory to be altered under future hydrological conditions. I emphasize that future studies should continue to disentangle these relationships.
6

The effects of herring gulls (Larus argentatus) on the vegetation and soils of their nesting sites /

Bays, Nathalie. January 1997 (has links)
This study was initiated to determine the effects of Herring Gulls (Larus argentatus) on the vegetation and soils of their nesting sites within the Mingan Island National Park Reserve. Both vegetation (species composition, cover, density, growth) and soil characteristics (pH, N, P, K, Ca, Mg) were monitored throughout the 1995 breeding season. Exclosures were installed within the colonies as control sites to prevent gull activity and these were compared to "treatment plots" or areas where gulls were present. All plants located at the study sites were native perennials with the exception of Stellaria, a native annual. Ledum groenlandicum was the only plant species significantly affected by gull activities. Both % cover and shoot growth for Ledum were greater in the exclosures than in the treatment plots over the breeding season. The gulls were also found to significantly increase pH and phosphorous levels in the soil through the deposition of faeces. Gull roosting sites were found to have higher nutrient levels than the nesting areas (treatment plots). The gulls appear to have minor effects over the short term, however the increases in soil nutrients may lead to significant changes over the long term. It is therefore imperative the exclosures remain in place to monitor for any long term changes which may occur.
7

The effects of herring gulls (Larus argentatus) on the vegetation and soils of their nesting sites /

Bays, Nathalie. January 1997 (has links)
No description available.

Page generated in 0.0681 seconds