• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and investigate the physical model with tungsten-based oxide resistance random access memory

Hung, Ya-Chi 13 July 2011 (has links)
In recent years, the conventional Flash memory with floating structure is expected to reach physical limits as devices scaling down in near future. In order to overcome this problem, alternative memory technologies have been widely investigated. And the resistance random access memory (RRAM) has attracted extensive attention for the application in next generation nonvolatile memory, due to the excellent memory property including lower consumption of energy, lower operating voltage, higher density, fast operating speed, simple structure, higher endurance, retention and process compatibility with CMOS. In this study, the tungsten-based oxide is chosen as RRAM switching layer because the tungsten is compatible with the present complementary metal oxide semiconductor (CMOS) process. The Pt/WOX/TiN structure device cells had the resistance switching property successfully. However, the experiment result revealed the inferior resistance switching property. The resistance switching characteristic of the WOX thin film is extremely unstable, it is impossible to become the products. Compared with WOX, the resistance switching property of WSiOX RRAM device is improved substantially such as stability of resistance states and reliability of device. In second parts, we purposed two methods to enhance the device switching characteristic, including controlling the filament formation/ interruption in the W doped SiOX layer and restricting oxygen movement in the WSiON layer. Finally, the transport mechanisms of carrier is analyzed and researched from the current-voltage (I-V) switching characteristic of the device. A designed circuit was used in this study to accurately observe the resistance switching process with a pulse generator and oscilloscope, which reveals that the switching process is related to both time and voltage. The oxygen movement will drift in the low temperature due to the electrical field and restricted the crystal lattice vibration. But, it will diffuse through thermal dynamics in the high temperature.

Page generated in 0.5974 seconds