• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Near Shannon Limit and Reduced Peak to Average Power Ratio Channel Coded OFDM

Kwak, Yongjun 24 July 2012 (has links)
Solutions to the problem of large peak to average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems are proposed. Although the design of PAPR reduction codewords has been extensively studied and the existence of asymptotically good codes with low PAPR has been proved, still no reduced PAPR capacity achieving code has been constructed. This is the topic of the current thesis.This goal is achieved by implementing a time-frequency turbo block coded OFDM. In this scheme, we design the frequency domain component code to have a PAPR bounded by a small number. The time domain component code is designed to obtain good performance while the decoding algorithm has reasonable complexity. Through comparative numerical evaluation we show that our method achieves considerable improvement in terms of PAPR with slight performance degradation compared to capacity achieving codes with similar block lengths. For the frequency domain component code, we used the realization of Golay sequences as cosets of the fi rst order Reed-Muller code and the modi cation of dual BCH code. A simple MAP decoding algorithm for the modi ed dual BCH code is also provided. Finally, we provide a flexible and practical scheme based on probabilistic approach to a PAPR problem. This approach decreases the PAPR without any signi cant performance loss and without any adverse impact or required change to the system. / Engineering and Applied Sciences

Page generated in 0.0568 seconds