• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Self-Preservation of Turbulence Statistics in the Wall-Wake Flow of a Bed-Mounted Horizontal Pipe

Devi, K., Hanmaiahgari, P.R., Balachandar, R., Pu, Jaan H. 23 March 2022 (has links)
Yes / This research article analyzed the self-preserving behaviour of wall-wake region of a circular pipe mounted horizontally over a flat rigid sand bed in a shallow flow in terms of mean velocity, RSS, and turbulence intensities. The study aims to investigate self-preservation using appropriate length and velocity scales.in addition to that wall-normal distributions of the third-order correlations along the streamwise direction in the wake region are analyzed. An ADV probe was used to record the three-dimensional instantaneous velocities for four different hydraulic and physical conditions corresponding to four cylinder Reynolds numbers. The results revealed that the streamwise velocity deficits, RSS deficits, and turbulence intensities deficits distributions displayed good collapse on a narrow band when they were non-dimensionalized by their respective maximum deficits. The wall-normal distance was non-dimensionalized by the half velocity profile width for velocity distributions, while the half RSS profile width was used in the case of the RSS deficits and turbulence intensities deficits distributions. The results indicate the self-preserving nature of streamwise velocity, RSS, and turbulence intensities in the wall-wake region of the pipe. The third-order correlations distributions indicate that sweep is the dominant bursting event in the near-bed zone. At the same time, ejection is the dominant bursting event in the region above the cylinder height.
2

Wavelet Analysis of Extreme Wind Loads on Low-Rise Structures

Janajreh, Isam Mustafa II 23 April 1998 (has links)
Over the past thirty years, extensive research has been conducted with the objective of reducing wind damage to structures. Wind tunnel simulations of wind loads have been the major source of building codes. However, a simple comparison of pressure coefficients measured in wind tunnel simulations with full-scale measurements show that the simulations, in general, underpredict extreme negative pressure coefficients. One obvious reason is the lack of consensus on wind tunnel simulation parameters. The wind in the atmospheric surface layer is highly turbulent. In simulating wind loads on structures, one needs to simulate the turbulent character besides satisfying geometric and dynamic similitudes. Some turbulence parameters that have been considered in many simulations include, turbulence intensities, integral length scales, surface roughness, and frequency spectrum. One problem with these parameters is that they are time varying in the atmospheric boundary layer and their averaged value, usually considered in the wind tunnel simulations, cannot be used to simulate pressure peaks. In this work, we show how wavelet analysis and time-scale representation can be used to establish an intermittency factor that characterizes energetic turbulence events in the atmospheric flows. Moreover, we relate these events to the occurrence of extreme negative peak pressures. / Ph. D.

Page generated in 0.1422 seconds