Spelling suggestions: "subject:"turn grass"" "subject:"tur grass""
1 |
Studium konkurenčních vztahů vybraných travních druhů po výsevu / Study of competitive relationships of selected grass species after sowingKAHOUN, Petr January 2014 (has links)
This thesis addresses the issue of competitive relationships of selected grass species from seed. The economic importance lies in identifying those species which compete in the mixture, and because a longer stay at a cost savings to restore the lawn. The experimental work was based field experiment with sowing of selected grass mixtures at two locations. From the onset of vegetation was observed onset of phenophases, the intensity of tillering, creating offshoots increase in the density and response to agro interventions. The results of this thesis is the creation of phytomass dynamics in the vegetation period, the overall look and boundness stand, his health, structural characterization of sod and economic evaluation.
|
2 |
The Fate of Nitrogen and Phosphorus from a SImulated Highway Cross-SectionWasowska, Zuzanna 01 January 2014 (has links)
Nutrient pollution as a result of excessive fertilizer application is of major concern for Florida's water resources. Excess fertilizer can be lost either via surface runoff or by leaching through the soil mass eventually reaching water bodies and leading to eutrophication. The focus of this study is to analyze the effect of low rainfall intensities and overland flow from an adjacent roadway surface on the loss of nutrients from two different fertilizers. This study focuses on the fate of the nitrogen and phosphorus present in fertilizers utilized by the Florida Department of Transportation for the stabilization of highway embankments. This research was performed on a field-scale test bed and rainfall simulator located at the Stormwater Management Academy at the University of Central Florida. The loss of nutrients was measured from two soil and sod combinations typically found in Florida and used for highway stabilization -Pensacola Bahia on AASHTO A-2-4 soil and Argentine Bahia on AASHTO A-3 soil. Two different fertilizers were analyzed, an all-purpose, quick-release 10-10-10 (N-P-K) fertilizer previously used by FDOT, and the new slow-release 16-0-8 (N-P-K) fertilizer, both applied at a rate of 0.5 lb/1000 ft2 consistent with FDOT's practice. Each combination was analyzed under two rainfall intensities: 0.1 in/hr and 0.25 in/hr at a slope consistent with typical highway cross-sections found in Florida. Nutrient losses were measured by collection of runoff and/or baseflow that escaped the test bed. Additionally, from the soil samples collected throughout the testing period, the mass of the nutrients was compared to the mass balances values based on literature from a previous study on fertilizers performed at the Stormwater Management Academy. The experimental findings of this study showed that there was a reduction in total nitrogen and total phosphorus on both A-2-4 soil and A-3 soil at the 0.25 in/hr intensity as a result of switching to the slow-release 16-0-8 (N-P-K) fertilizer. Results from the 0.1 in/hr rainfall intensity, which were available only for the A-2-4 soil, showed that at this intensity there was no apparent benefit to the switch in fertilizers. Furthermore, it was found that less total nitrogen and total phosphorus was lost from A-3 soil than A-2-4 soil at 0.25 in/hr when using 10-10-10 (N-P-K). At 0.1 in/hr, there was no apparent difference in total nitrogen lost. However, less total phosphorus was lost at this intensity. The results of this study showed that there is an environmental benefit to applying slow-release fertilizers. This was more significant for the 0.25 in/hr intensity than the 0.1 in/hr intensity at which no apparent benefit was found. In addition, it was found that runoff was a greater source of nutrient loss than baseflow, although baseflow losses were substantial. Furthermore, it was found that total nitrogen tends to be lost via both pathways of runoff and baseflow while phosphorus has a lower tendency to leach through the soil but readily runs off the soil surface. It was also observed that because fresh sod tends to be heavily fertilized, applications of fertilizer could be reduced or avoided entirely after sod placement and applied as needed.
|
3 |
Turfgrass species composition, resistance mechanisms, and management strategy impacts on brown patch incidence and weed encroachmentCutulle, Matthew Anthony 07 October 2011 (has links)
Tall fescue (Festuca arundinacea Schreb.) has great utility as a low maintenance turfgrass in the northern and transition zone regions of the United States. However, it is difficult to successfully maintain tall fescue of high quality over consecutive summers because of its susceptibility to the fungal pathogen Rhizoctonia solani, which causes the disease brown patch. Not only is brown patch aesthetically unpleasing in a stand of tall fescue but it can also thin out the turf and allow for the encroachment of undesirable weedy species. Cultivar selection, cultural practices, mixing turf species and timing of pesticide applications all can impact the epidemiology of brown patch in tall fescue. Research was conducted in tall fescue to quantify chitinase activity in different cultivars, elucidate the impact of mowing height and nitrogen fertility on brown patch and bermudagrass (Cynodon dactylon L.) encroachment, to evaluate seeding mixtures of tall fescue with hybrid bluegrass (Poa pratensis x Poa arachnifera) on diseases and weeds as well as measuring the impact of the herbicide bispyribac-sodium on brown patch. Chitinase activity was greater in the tall fescue cultivar that was less susceptible to brown patch. In the mowing-fertility studies, cutting tall fescue at 10 cm generally reduced brown patch and bermudagrass encroachment compared to 6 cm. Mixing hybrid bluegrass with tall fescue reduced disease and weed species infestations compared to tall fescue alone. Applying bispyribac-sodium earlier in April resulted in less brown patch and better weed control compared to application in May. Based on this research brown patch severity and subsequent weed species infestations can be reduced by selecting a tall fescue cultivar with a high basal level of chitinase, mowing it at 10 cm and mixing it with a hybrid bluegrass cultivar. / Ph. D.
|
Page generated in 0.0728 seconds