• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of wet gas compression in twin-screw multiphase pump

Xu, Jian 15 May 2009 (has links)
Twin-screw multiphase pumps experience a severe decrease in efficiency, even the breakdown of pumping function, when operating under wet gas conditions. Additionally, field operations have revealed significant vibration and thermal issues which can lead to damage of the pump internals and expensive repairs and maintenance. There are limited models simulating the performance of twin-screw pump under these conditions. This project develops a pump-user oriented simulator to model the performance of twin-screw pumps under wet gas conditions. Experimental testing is conducted to verify the simulation results. Based on the simulations, an innovative solution is presented to improve the efficiency and prevent the breakdown of pumping function. A new model is developed based upon a previous Texas A&M twin-screw pump model. In this model, both the gas slip and liquid slip in the pump clearances are simulated. The mechanical model is coupled with a thermodynamic model to predict the pressure and temperature distribution along the screws. The comparison of experimental data and the predictions of both isothermal and non-isothermal models show a better match than previous models with Gas Volume Fraction (GVF) 95% and 98%. Compatible with the previous Texas A&M twin-screw pump model, this model can be used to simulate the twin-screw pump performance with GVF from 0% to 99%. Based on the effect of liquid viscosity, a novel solution is investigated with the newly developed model to improve the efficiency and reliability of twin-screw pump performance with GVF higher than 94%. The solution is to inject high viscosity liquid directly into the twin-screw pump. After the simulations of several different scenarios with various liquid injection rates and injection positions, we conclude that the volumetric efficiency increases with increasing liquid viscosity and injecting liquid in the suction is suggested.
2

Performance Evaluation and CFD Simulation of Multiphase Twin-Screw Pumps

Patil, Abhay 16 December 2013 (has links)
Twin-screw pumps are economical alternatives to the conventional multiphase system and are increasingly used in the oil and gas industry due to their versatility in transferring the multiphase mixture with varying Gas Void Fraction (GVF). Present work focuses on the experimental and numerical analysis of twin-screw pumps for different operating conditions. Experimental evaluation aims to understand steady state and transient behavior of twin-screw pumps. Detailed steady state evaluation helped form better understanding of twin-screw pumps under different operating conditions. A comparative study of twin-screw pumps and compressors contradicted the common belief that compressor efficiency is better than the efficiency of twin-screw pumps. Transient analysis at high GVF helped incorporate necessary changes in the design of sealflush recirculation loop to improve the efficiency of the pump. The effect of viscosity of the sealflush fluid at high GVF on pump performance was studied. Volumetric efficiency was found to be decreased with increase in viscosity. Flow visualization was aimed to characterize phase distribution along cavities and clearances at low to high GVF. Dynamic pressure variation was studied along the axis of the screw which helped correlate the GVF, velocity and pressure distribution. Complicated fluid flow behavior due to enclosed fluid pockets and interconnecting clearances makes it difficult to numerically simulate the pump. Hence design optimization and performance prediction incorporates only analytical approach and experimental evaluation. Current work represents an attempt to numerically simulate a multiphase twin-screw pump as a whole. Single phase 3D CFD simulation was performed for different pressure rise. The pressure and velocity profile agreed well with previous studies. Results are validated using an analytical approach as well as experimental data. A two-phase CFD simulation was performed for 50% GVF. An Eulerian approach was employed to evaluate multiphase flow behavior. Pressure, velocity, temperature and GVF distributions were successfully predicted using CFD simulation. Bubble size was found to be most dominant parameter, significantly affecting phase separation and leakage flow rate. Better phase separation was realized with increased bubble size, which resulted in decrease in leakage flow rate. CFD results agreed well with experimental data for the bubble size higher than 0.08 mm.
3

Rotordynamics of Twin-Screw Pumps

Aboel Hassan Muhammed, Ameen 02 October 2013 (has links)
Twin-screw pumps are positive displacement machines. Two meshing screws connected by timing gears convey the fluid trapped in the screw chambers axially from suction to discharge and force it out against the back pressure. Because of the screw geometry, the circumferential pressure field around the screws is not balanced, resulting in net dynamic and static pressures applied on the rotors. The research work presented here aims at building and verifying a model to predict both: (1) the exciting lateral hydrodynamic forces produced by the unbalanced pressure field, and (2) the rotor response due to those forces. The model rests on the screw pump hydraulic models for predicting the pressure in the screw chambers as a function of the discharge pressure. These models are extended to predict the steady state dynamic pressure field as a function of the rotational angle of the rotor. The dynamic force resulting from the dynamic pressure field is calculated and applied to the rotor as a set of super-synchronous periodic forces. The structural model of the screw, although nonsymmetrical, was found to be accurately represented by an axisymmetric equivalent structure. The rotor response to the dynamic super-synchronous forces is calculated to predict the pump rotordynamic behavior. The work in this dissertation presents: (1) the axisymmetric structural model of the rotors (2) the proposed dynamic pressure model, (3) the screw pump rotor response, (4) the experimental validation of the dynamic pressure model and rotor response. The topic of twin-screw pump rotordynamics is absent from the literature. The original contribution of the work presented in this dissertation to the field of rotordynamics includes: (1) demonstrating the adequacy of an axisymmetric model for modeling the screw section, (2) developing a model for predicting the dynamic pressure field around the screws, (3) characterization of the dynamic forces (synchronous and its harmonics) applied at the screw pump rotors, (4) predicting the dynamic response of twin-screw pump rotors due to hydrodynamic forces, (5) measuring the axial dynamic pressure in two circumferential planes around the screws to verify pressure predictions, (6) measuring the dynamic response of twin-screw pump rotor.
4

Modelo de comportamento termodinâmico de uma bomba multifásica do tipo duplo parafuso. / Thermodynamic model of a twin-screw multiphase pump.

Celso Yukio Nakashima 04 December 2000 (has links)
Esse trabalho apresenta um modelo termodinâmico de uma bomba multifásica do tipo duplo parafuso. Para uma dada condição de operação, o modelo calcula a potência consumida, as condições do fluido na descarga e o perfil de pressão ao longo da bomba. Ao invés de simular diretamente o escoamento dentro da bomba, simulou-se os processos que ocorrem dentro das suas câmaras. Para tanto, dividiu-se o processo de bombeamento multifásico em uma seqüência de processos simples, facilitando-se a construção do modelo no simulador de processos Hysys.Process v2.1. Os resultados de potência e temperatura de descarga obtidos com a simulação mostram uma boa concordância com valores experimentais, principalmente para FVG’s baixos. Para FVG’s elevados, o modelo passa a superestimar a potência consumida indicando que as fendas, nesses casos, já não se encontram totalmente preenchidas com líqüido. Dos resultados obtidos para o refluxo, conclui-se que, das equações sugeridas na literatura, aquelas para escoamento turbulento liso são mais adequadas para os números de Reynolds envolvidos. O perfil de pressão e a vazão de refluxo quando o escoamento é multifásico aproxima-se qualitativamente das medições experimentais. Estudou-se a influência de diversos parâmetros na eficiência exergética da bomba. Os resultados mostram que a otimização da eficiência depende das condições de operação da bomba: FVG, tipo de líqüido, diferença de pressão, entre outros. / The goal of this project was to develop a thermodynamic model of a twin-screw multiphase pump. With given operation conditions the model can determine the absorbed power, discharge conditions and the pressure profile along the screw. An alternative approach was suggested to overcome the complex flow problem and the processes inside the pump were simulated instead of direct simulation of the flow. For this purpose, the multiphase pumping process was divided in a sequence of simple processes so the model could be developed in an easier way. The power and temperature values calculated by the model are in good agreement with experimental data, mainly when the gas fraction is low. With higher gas fractions, the model overestimates the absorbed power indicating that screw gaps are not completely filled with liquid anymore. Concerning about the backflow rate, the results show that the equations for turbulent flow in smooth ducts fits better the Reynolds number range in the gaps. The pressure profile and backflow rate for multiphase flow agree qualitatively with experimental results. The influence of several parameters in the exergetic eficiency of the pump were analysed and results show that the efficiency optimization depends on pump operation conditions: gas fraction, liquid type, pressure difference and others.
5

Modelo de comportamento termodinâmico de uma bomba multifásica do tipo duplo parafuso. / Thermodynamic model of a twin-screw multiphase pump.

Nakashima, Celso Yukio 04 December 2000 (has links)
Esse trabalho apresenta um modelo termodinâmico de uma bomba multifásica do tipo duplo parafuso. Para uma dada condição de operação, o modelo calcula a potência consumida, as condições do fluido na descarga e o perfil de pressão ao longo da bomba. Ao invés de simular diretamente o escoamento dentro da bomba, simulou-se os processos que ocorrem dentro das suas câmaras. Para tanto, dividiu-se o processo de bombeamento multifásico em uma seqüência de processos simples, facilitando-se a construção do modelo no simulador de processos Hysys.Process v2.1. Os resultados de potência e temperatura de descarga obtidos com a simulação mostram uma boa concordância com valores experimentais, principalmente para FVG’s baixos. Para FVG’s elevados, o modelo passa a superestimar a potência consumida indicando que as fendas, nesses casos, já não se encontram totalmente preenchidas com líqüido. Dos resultados obtidos para o refluxo, conclui-se que, das equações sugeridas na literatura, aquelas para escoamento turbulento liso são mais adequadas para os números de Reynolds envolvidos. O perfil de pressão e a vazão de refluxo quando o escoamento é multifásico aproxima-se qualitativamente das medições experimentais. Estudou-se a influência de diversos parâmetros na eficiência exergética da bomba. Os resultados mostram que a otimização da eficiência depende das condições de operação da bomba: FVG, tipo de líqüido, diferença de pressão, entre outros. / The goal of this project was to develop a thermodynamic model of a twin-screw multiphase pump. With given operation conditions the model can determine the absorbed power, discharge conditions and the pressure profile along the screw. An alternative approach was suggested to overcome the complex flow problem and the processes inside the pump were simulated instead of direct simulation of the flow. For this purpose, the multiphase pumping process was divided in a sequence of simple processes so the model could be developed in an easier way. The power and temperature values calculated by the model are in good agreement with experimental data, mainly when the gas fraction is low. With higher gas fractions, the model overestimates the absorbed power indicating that screw gaps are not completely filled with liquid anymore. Concerning about the backflow rate, the results show that the equations for turbulent flow in smooth ducts fits better the Reynolds number range in the gaps. The pressure profile and backflow rate for multiphase flow agree qualitatively with experimental results. The influence of several parameters in the exergetic eficiency of the pump were analysed and results show that the efficiency optimization depends on pump operation conditions: gas fraction, liquid type, pressure difference and others.
6

Modelagem e simulação de uma bomba multifásica de duplo parafuso com recirculação interna. / Modeling and simulation of a twin screw multiphase pump with internal recirculation.

Ramirez Duque, Jose Luis Gerardo 09 September 2016 (has links)
As crescentes exigências sobre o desempenho de sistemas de bombeamento multifásico combinadas aos aspectos relacionados com a maior disponibilidade operacional desses sistemas, bem como as futuras condições de funcionamento atingindo pressões perto de 150 bar, destacam a importância de desenvolver modelos matemáticos precisos para prever o comportamento do desempenho nestes equipamentos. Nesta tese foi aperfeiçoado o modelo termo-hidráulico de uma bomba multifásica de tipo duplo parafuso desenvolvido por Nakashima (2005) e foram incluídos os efeitos da abertura gradual da última câmara, recirculação de líquido entre a sucção e descarga, transferência de calor através do liner e expansão térmica. Uma vez fornecidos os dados geométricos da bomba e as suas condições de operação, é possível calcular os parâmetros de desempenho mais importantes, como: eficiência volumétrica, vazão de sucção e refluxo, potência consumida e distribuição de pressão e temperatura. As equações implementadas foram desenvolvidas a partir dos balanços de massa e energia nas câmaras, tendo em conta a geometria da bomba e a variação das fendas durante sua operação. As rotinas e métodos necessários para a sua solução numérica foram implementadas utilizando programação orientada a objetos (C++). Os resultados fornecidos pelo modelo aperfeiçoado foram comparados com dados experimentais da literatura e uma boa concordância foi encontrada na faixa de até 95 % FVG, nos casos estudados, para bombas com e sem tecnologia de recirculação. Devido à complexidade dos fenômenos físicos envolvidos durante a operação da bomba, o impacto de cada um dos efeitos incorporados nos cálculos do modelo foi avaliado e discutido individualmente. Assim, foi demonstrada a grande influencia da recirculação, da abertura gradual da câmara de descarga e da expansão térmica nos cálculos dos parâmetros de operação mais importantes da bomba. Além disso, a transferência de calor pode ser considerada desprezível, já que seu valor é baixo quando comparado com a potência fornecida pela bomba e, portanto, não influencia os balanços de energia que determinam os estados termodinâmicos das câmaras. No entanto, esse efeito é necessário para calcular a distribuição de temperatura da bomba e a expansão térmica nos parafusos e no liner. / The increasing requirements about the performance of multiphase pumping systems combined with those related to a higher operational availability of such systems, as well as future operating conditions with pressure increase at about 150 bar, highlights the importance of developing accurate mathematical models to predict the performance behavior of these equipments. In this thesis it was improved the thermo-hydraulic behavior of a twin screw multiphase pump developed by Nakashima (2005), and were included the effects of the gradual opening of the last chamber, fluid recirculation between suction and discharge of the pump, heat transfer though the liner, thermal expansion and different working fluids (water-air and oil-gas). Giving pump geometry and operational conditions, it is possible to calculate the most important pump parameters performance, such as, volumetric efficiency, suction flow, back-flow, power consumption and pressure and temperature distribution. The model equations were developed based on mass and energy balances in the chambers taking into account the pump geometry and the clearance variation due to operation. Its implementation was made in C++. The results obtained by the new model were compared with experimental data of the bibliography, and a good accuracy was found in it with values till 95% GVF for the studied cases, with and without recirculation technology. Due to the physical phenomenon complexity related with the pump operation, the impact of each effect in the model calculations was evaluated and discussed separately. So, it was demonstrated the importance of the recirculation, the gradual opening of the last chamber and the thermal expansion in the calculation of the most important pump operation parameters. However, the heat transfer can be neglected, because its value is very low when compared with the pump power supply, and therefore, it does not influence the energy balances that determine thermodynamic state in the chambers. However, this effect is necessary to calculate the temperature distribution along the pump and the thermal expansion in the screws and the liner.
7

Modelagem e simulação de uma bomba multifásica de duplo parafuso com recirculação interna. / Modeling and simulation of a twin screw multiphase pump with internal recirculation.

Jose Luis Gerardo Ramirez Duque 09 September 2016 (has links)
As crescentes exigências sobre o desempenho de sistemas de bombeamento multifásico combinadas aos aspectos relacionados com a maior disponibilidade operacional desses sistemas, bem como as futuras condições de funcionamento atingindo pressões perto de 150 bar, destacam a importância de desenvolver modelos matemáticos precisos para prever o comportamento do desempenho nestes equipamentos. Nesta tese foi aperfeiçoado o modelo termo-hidráulico de uma bomba multifásica de tipo duplo parafuso desenvolvido por Nakashima (2005) e foram incluídos os efeitos da abertura gradual da última câmara, recirculação de líquido entre a sucção e descarga, transferência de calor através do liner e expansão térmica. Uma vez fornecidos os dados geométricos da bomba e as suas condições de operação, é possível calcular os parâmetros de desempenho mais importantes, como: eficiência volumétrica, vazão de sucção e refluxo, potência consumida e distribuição de pressão e temperatura. As equações implementadas foram desenvolvidas a partir dos balanços de massa e energia nas câmaras, tendo em conta a geometria da bomba e a variação das fendas durante sua operação. As rotinas e métodos necessários para a sua solução numérica foram implementadas utilizando programação orientada a objetos (C++). Os resultados fornecidos pelo modelo aperfeiçoado foram comparados com dados experimentais da literatura e uma boa concordância foi encontrada na faixa de até 95 % FVG, nos casos estudados, para bombas com e sem tecnologia de recirculação. Devido à complexidade dos fenômenos físicos envolvidos durante a operação da bomba, o impacto de cada um dos efeitos incorporados nos cálculos do modelo foi avaliado e discutido individualmente. Assim, foi demonstrada a grande influencia da recirculação, da abertura gradual da câmara de descarga e da expansão térmica nos cálculos dos parâmetros de operação mais importantes da bomba. Além disso, a transferência de calor pode ser considerada desprezível, já que seu valor é baixo quando comparado com a potência fornecida pela bomba e, portanto, não influencia os balanços de energia que determinam os estados termodinâmicos das câmaras. No entanto, esse efeito é necessário para calcular a distribuição de temperatura da bomba e a expansão térmica nos parafusos e no liner. / The increasing requirements about the performance of multiphase pumping systems combined with those related to a higher operational availability of such systems, as well as future operating conditions with pressure increase at about 150 bar, highlights the importance of developing accurate mathematical models to predict the performance behavior of these equipments. In this thesis it was improved the thermo-hydraulic behavior of a twin screw multiphase pump developed by Nakashima (2005), and were included the effects of the gradual opening of the last chamber, fluid recirculation between suction and discharge of the pump, heat transfer though the liner, thermal expansion and different working fluids (water-air and oil-gas). Giving pump geometry and operational conditions, it is possible to calculate the most important pump parameters performance, such as, volumetric efficiency, suction flow, back-flow, power consumption and pressure and temperature distribution. The model equations were developed based on mass and energy balances in the chambers taking into account the pump geometry and the clearance variation due to operation. Its implementation was made in C++. The results obtained by the new model were compared with experimental data of the bibliography, and a good accuracy was found in it with values till 95% GVF for the studied cases, with and without recirculation technology. Due to the physical phenomenon complexity related with the pump operation, the impact of each effect in the model calculations was evaluated and discussed separately. So, it was demonstrated the importance of the recirculation, the gradual opening of the last chamber and the thermal expansion in the calculation of the most important pump operation parameters. However, the heat transfer can be neglected, because its value is very low when compared with the pump power supply, and therefore, it does not influence the energy balances that determine thermodynamic state in the chambers. However, this effect is necessary to calculate the temperature distribution along the pump and the thermal expansion in the screws and the liner.

Page generated in 0.07 seconds