• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 24
  • 13
  • 7
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 131
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Twist regulates E-cadherin and N-cadherin expression levels in distinct human trophoblastic cell lines in vitro.

Chen, Juelei 05 1900 (has links)
Cadherin gene family members are known to be involved in the differentiation of cytotrophoblasts of the human placenta. In particular, the regulation of cadherin expression is coupled with the development of an invasive phenotype and the formation of the multinucleated syncytiotrophoblast. To investigate further the mechanisms underlying the differential regulation of cadherins during these developmental processes, we have examined the role of the transcription factor known as Twist. Twist is a basic HLH (helix-loop-helix) factor which has been shown to regulate cadherin expression in a variety of human tissues under normal and pathological conditions. Using an siRNA strategy, I have determined that Twist regulates both E-cadherin and N-cadherin in distinct subtypes of human trophoblastic cells in vitro. In particular, suppression of Twist gene expression in poorly invasive BeWo choriocarcinoma cells by using Twist-specific siRNA resulted in a concomitant increase in E-cadherin mRNA and protein levels in these cells. In contrast, transfection of highly invasive extravillous cytotrophoblasts with Twist siRNA decreased N-cadherin mRNA levels in a concentration-dependent manner. Taken together, these observations indicate that Twist differentially regulates E-cadherin and N-cadherin in human trophoblastic cells, two cadherin subtypes that govern the differentiation of these cells along the non-invasive and invasive pathways respectively. Although, the results of my studies do not directly demonstrate this biological function of Twist, they support the speculation that alterations in Twist expression levels will result in cadherin-mediated disorders of pregnancy associated with aberrant trophoblast differentiation.
2

Twist regulates E-cadherin and N-cadherin expression levels in distinct human trophoblastic cell lines in vitro.

Chen, Juelei 05 1900 (has links)
Cadherin gene family members are known to be involved in the differentiation of cytotrophoblasts of the human placenta. In particular, the regulation of cadherin expression is coupled with the development of an invasive phenotype and the formation of the multinucleated syncytiotrophoblast. To investigate further the mechanisms underlying the differential regulation of cadherins during these developmental processes, we have examined the role of the transcription factor known as Twist. Twist is a basic HLH (helix-loop-helix) factor which has been shown to regulate cadherin expression in a variety of human tissues under normal and pathological conditions. Using an siRNA strategy, I have determined that Twist regulates both E-cadherin and N-cadherin in distinct subtypes of human trophoblastic cells in vitro. In particular, suppression of Twist gene expression in poorly invasive BeWo choriocarcinoma cells by using Twist-specific siRNA resulted in a concomitant increase in E-cadherin mRNA and protein levels in these cells. In contrast, transfection of highly invasive extravillous cytotrophoblasts with Twist siRNA decreased N-cadherin mRNA levels in a concentration-dependent manner. Taken together, these observations indicate that Twist differentially regulates E-cadherin and N-cadherin in human trophoblastic cells, two cadherin subtypes that govern the differentiation of these cells along the non-invasive and invasive pathways respectively. Although, the results of my studies do not directly demonstrate this biological function of Twist, they support the speculation that alterations in Twist expression levels will result in cadherin-mediated disorders of pregnancy associated with aberrant trophoblast differentiation.
3

On the grinding of twist drill flutes

Kawlra, Raj Kumar. January 1980 (has links)
Thesis (M.S.)--University of Wisconsin--Madison. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 70-71).
4

A microprocessor controlled twist drill grinder for automated drill point production

Fugelso, Mark Alan. January 1978 (has links)
Thesis--University of Wisconsin--Madison. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 126).
5

An investigation of chip formation and tool life in twist drilling

Nacaroglu, Sevki Sami. January 1981 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1981. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 174-177).
6

A development of mathematical models of twist drill

Hsu, George Phiching. January 1983 (has links)
Thesis (M.S.)--University of Wisconsin, 1983. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 109-111).
7

Twist regulates E-cadherin and N-cadherin expression levels in distinct human trophoblastic cell lines in vitro.

Chen, Juelei 05 1900 (has links)
Cadherin gene family members are known to be involved in the differentiation of cytotrophoblasts of the human placenta. In particular, the regulation of cadherin expression is coupled with the development of an invasive phenotype and the formation of the multinucleated syncytiotrophoblast. To investigate further the mechanisms underlying the differential regulation of cadherins during these developmental processes, we have examined the role of the transcription factor known as Twist. Twist is a basic HLH (helix-loop-helix) factor which has been shown to regulate cadherin expression in a variety of human tissues under normal and pathological conditions. Using an siRNA strategy, I have determined that Twist regulates both E-cadherin and N-cadherin in distinct subtypes of human trophoblastic cells in vitro. In particular, suppression of Twist gene expression in poorly invasive BeWo choriocarcinoma cells by using Twist-specific siRNA resulted in a concomitant increase in E-cadherin mRNA and protein levels in these cells. In contrast, transfection of highly invasive extravillous cytotrophoblasts with Twist siRNA decreased N-cadherin mRNA levels in a concentration-dependent manner. Taken together, these observations indicate that Twist differentially regulates E-cadherin and N-cadherin in human trophoblastic cells, two cadherin subtypes that govern the differentiation of these cells along the non-invasive and invasive pathways respectively. Although, the results of my studies do not directly demonstrate this biological function of Twist, they support the speculation that alterations in Twist expression levels will result in cadherin-mediated disorders of pregnancy associated with aberrant trophoblast differentiation. / Medicine, Faculty of / Obstetrics and Gynaecology, Department of / Graduate
8

Single electron transport in carbon nanotubes

Bailey, Steven W. D. January 2001 (has links)
No description available.
9

The twist characteristics in open-end spun yarns

Singh, V. P. January 1980 (has links)
No description available.
10

A.J. Duymaer van Twist een historisch-liberaal staatsman, 1809-1877 /

Zwart, Jan. January 1939 (has links)
Thesis (doctoral)--Utrecht, 1939. / Published also as Utrechtsche bijdragen tot de geschiedenis, het staatsrecht en de economie van Nederlandsch-Indië, v. 16. "Stellingen": [2] leaves inserted. Includes bibliographical references (p. 406-407) and index.

Page generated in 0.0399 seconds