1 |
Application of two frequency fringe pattern for phase-shifting projected fringe profilometryChen, Hong-Ming 08 July 2005 (has links)
A novel accurate calibration-based phase-shifting projected fringe profilometry (Calibration-based PSPFP) for finding the absolute shape of objects is proposed. In addition to a tremendous savings in time, the benefits of using Calibration-based PSPFP also include greatly reduced environmental vulnerability.
Since Calibration-based PSPFP employs a sinusoidal fringe pattern to perform the phase-shifting algorithm, the quality and accuracy of the sinusoidal fringe pattern becomes critical. To evaluate the performance of this measurement scheme and reduce the phase error caused by projected fringes, fabrication of various digital sinusoidal fringe patterns is necessary. Thus, we propose a method to fabricate various digital patterns. Application of a 2-D fringe pattern for Calibration-based PSPFP is proposed as well.
|
2 |
Complexidade dinâmica de um laser de estado sólido de dois modos com realimentação óptica de frequência modificada / Dynamical complexity of a two-mode solid state laser with frequency-shifted optical feedbackPrants, Fabiola Grasnievicz January 2017 (has links)
Nesse trabalho estudamos um laser de estado sólido sujeito a realimentação optica de frequência modificada de um ponto de vista da teoria de bifurcações. Fizemos uma an alise bastante ampla da dinâmica desse laser no espaço de dois parâmetros de injeção (a dessintonização de frequência e a intensidade da injeção) utilizando métodos de integração direta e continuação numérica. Enquanto o método de integração numérica nos possibilitou analisar as dinâmicas mais complexas, incluindo transições para o caos e hipercaos, o método de continuação numérica nos permitiu estudar curvas de bifurcações estáveis e instáveis. A análise foi realizada estudando os efeitos causados pela mudança dos parâmetros que representam o tempo de vida da inversão populacional e a saturação cruzada, responsável pelo acoplamento dos campos dentro do meio ativo. Mostramos que o parâmetro que descreve o tempo de vida da inversão populacional e responsável pelo surgimento de diversas instabilidades no sistema, como o fenômeno de multiestabilidade, surgimento de orbitas periódicas e quase-peri odicas, assim como rotas para o caos via dobramento de período e torus. Para o parâmetro de acoplamento dos campos, mostramos que ele possibilita a presença de hipercaos em nosso sistema, este podendo se apresentar no que denominamos de hipercaos \fraco" e \forte". Dentro da região de hipercaos \forte", mostramos transições determinísticas de dois regimes, em que num deles o laser opera no modo de Q-switching, enquanto que no outro o laser apresenta pequenas oscilações irregulares. Por m, mostramos a existência de uma estatística de eventos extremos dentro do regime hipercaótico. / In this work we studied a solid state laser subjected to frequency-shifted optical feedback from a bifurcation theory point of view. We performed a very broad analysis of the dynamics of this laser in the space of two injection parameters (frequency detuning and injection intensity) using direct integration and numerical continuation methods. While the numerical integration method allowed us to analyze the more complex dynamics, including chaos and hyperchaos transitions, the numerical continuation method allowed us to study stable and unstable bifurcation curves. The analysis was carried out by studying the e ects caused by the change of the parameters that represent the life time of the population inversion and the cross saturation, responsible for the coupling of the elds within the active medium. We show that the parameter that describes the life time of the population inversion is responsible for the appearance of several instabilities in the system, such as the multistability phenomenon, the appearance of periodic and quasi-periodic orbits, as well as routes to chaos via period doubling and torus . For the eld coupling parameter, we show that it allows the presence of hyperchaos in our system, which may present in what we call "weak"and "strong"hyperchaos. Within the "strong"hyperchaos region, we show deterministic transitions of two regimes, in which one laser operates in the Q-switching mode, while in the other the laser presents small irregular oscillations. Finally, we have shown the existence of a extreme events statistic within the hyperchaotic regime.
|
3 |
Complexidade dinâmica de um laser de estado sólido de dois modos com realimentação óptica de frequência modificada / Dynamical complexity of a two-mode solid state laser with frequency-shifted optical feedbackPrants, Fabiola Grasnievicz January 2017 (has links)
Nesse trabalho estudamos um laser de estado sólido sujeito a realimentação optica de frequência modificada de um ponto de vista da teoria de bifurcações. Fizemos uma an alise bastante ampla da dinâmica desse laser no espaço de dois parâmetros de injeção (a dessintonização de frequência e a intensidade da injeção) utilizando métodos de integração direta e continuação numérica. Enquanto o método de integração numérica nos possibilitou analisar as dinâmicas mais complexas, incluindo transições para o caos e hipercaos, o método de continuação numérica nos permitiu estudar curvas de bifurcações estáveis e instáveis. A análise foi realizada estudando os efeitos causados pela mudança dos parâmetros que representam o tempo de vida da inversão populacional e a saturação cruzada, responsável pelo acoplamento dos campos dentro do meio ativo. Mostramos que o parâmetro que descreve o tempo de vida da inversão populacional e responsável pelo surgimento de diversas instabilidades no sistema, como o fenômeno de multiestabilidade, surgimento de orbitas periódicas e quase-peri odicas, assim como rotas para o caos via dobramento de período e torus. Para o parâmetro de acoplamento dos campos, mostramos que ele possibilita a presença de hipercaos em nosso sistema, este podendo se apresentar no que denominamos de hipercaos \fraco" e \forte". Dentro da região de hipercaos \forte", mostramos transições determinísticas de dois regimes, em que num deles o laser opera no modo de Q-switching, enquanto que no outro o laser apresenta pequenas oscilações irregulares. Por m, mostramos a existência de uma estatística de eventos extremos dentro do regime hipercaótico. / In this work we studied a solid state laser subjected to frequency-shifted optical feedback from a bifurcation theory point of view. We performed a very broad analysis of the dynamics of this laser in the space of two injection parameters (frequency detuning and injection intensity) using direct integration and numerical continuation methods. While the numerical integration method allowed us to analyze the more complex dynamics, including chaos and hyperchaos transitions, the numerical continuation method allowed us to study stable and unstable bifurcation curves. The analysis was carried out by studying the e ects caused by the change of the parameters that represent the life time of the population inversion and the cross saturation, responsible for the coupling of the elds within the active medium. We show that the parameter that describes the life time of the population inversion is responsible for the appearance of several instabilities in the system, such as the multistability phenomenon, the appearance of periodic and quasi-periodic orbits, as well as routes to chaos via period doubling and torus . For the eld coupling parameter, we show that it allows the presence of hyperchaos in our system, which may present in what we call "weak"and "strong"hyperchaos. Within the "strong"hyperchaos region, we show deterministic transitions of two regimes, in which one laser operates in the Q-switching mode, while in the other the laser presents small irregular oscillations. Finally, we have shown the existence of a extreme events statistic within the hyperchaotic regime.
|
4 |
Complexidade dinâmica de um laser de estado sólido de dois modos com realimentação óptica de frequência modificada / Dynamical complexity of a two-mode solid state laser with frequency-shifted optical feedbackPrants, Fabiola Grasnievicz January 2017 (has links)
Nesse trabalho estudamos um laser de estado sólido sujeito a realimentação optica de frequência modificada de um ponto de vista da teoria de bifurcações. Fizemos uma an alise bastante ampla da dinâmica desse laser no espaço de dois parâmetros de injeção (a dessintonização de frequência e a intensidade da injeção) utilizando métodos de integração direta e continuação numérica. Enquanto o método de integração numérica nos possibilitou analisar as dinâmicas mais complexas, incluindo transições para o caos e hipercaos, o método de continuação numérica nos permitiu estudar curvas de bifurcações estáveis e instáveis. A análise foi realizada estudando os efeitos causados pela mudança dos parâmetros que representam o tempo de vida da inversão populacional e a saturação cruzada, responsável pelo acoplamento dos campos dentro do meio ativo. Mostramos que o parâmetro que descreve o tempo de vida da inversão populacional e responsável pelo surgimento de diversas instabilidades no sistema, como o fenômeno de multiestabilidade, surgimento de orbitas periódicas e quase-peri odicas, assim como rotas para o caos via dobramento de período e torus. Para o parâmetro de acoplamento dos campos, mostramos que ele possibilita a presença de hipercaos em nosso sistema, este podendo se apresentar no que denominamos de hipercaos \fraco" e \forte". Dentro da região de hipercaos \forte", mostramos transições determinísticas de dois regimes, em que num deles o laser opera no modo de Q-switching, enquanto que no outro o laser apresenta pequenas oscilações irregulares. Por m, mostramos a existência de uma estatística de eventos extremos dentro do regime hipercaótico. / In this work we studied a solid state laser subjected to frequency-shifted optical feedback from a bifurcation theory point of view. We performed a very broad analysis of the dynamics of this laser in the space of two injection parameters (frequency detuning and injection intensity) using direct integration and numerical continuation methods. While the numerical integration method allowed us to analyze the more complex dynamics, including chaos and hyperchaos transitions, the numerical continuation method allowed us to study stable and unstable bifurcation curves. The analysis was carried out by studying the e ects caused by the change of the parameters that represent the life time of the population inversion and the cross saturation, responsible for the coupling of the elds within the active medium. We show that the parameter that describes the life time of the population inversion is responsible for the appearance of several instabilities in the system, such as the multistability phenomenon, the appearance of periodic and quasi-periodic orbits, as well as routes to chaos via period doubling and torus . For the eld coupling parameter, we show that it allows the presence of hyperchaos in our system, which may present in what we call "weak"and "strong"hyperchaos. Within the "strong"hyperchaos region, we show deterministic transitions of two regimes, in which one laser operates in the Q-switching mode, while in the other the laser presents small irregular oscillations. Finally, we have shown the existence of a extreme events statistic within the hyperchaotic regime.
|
Page generated in 0.0808 seconds