• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Two-phase flow investigation in a cold-gas solid rocket motor model through the study of the slag accumulation process

Tóth, Balázs 22 January 2008 (has links)
The present research project is carried out at the von Karman Institute for Fluid Dynamics (Rhode-Saint-Genèse, Belgium) with the financial support of the European Space Agency. The first stage of spacecrafts (e.g. Ariane 5, Vega, Shuttle) generally consists of large solid propellant rocket motors (SRM), which often consist of segmented structure and incorporate a submerged nozzle. During the combustion, the regression of the solid propellant surrounding the nozzle integration part leads to the formation of a cavity around the nozzle lip. The propellant combustion generates liquefied alumina droplets coming from chemical reaction of the aluminum composing the propellant grain. The alumina droplets being carried away by the hot burnt gases are flowing towards the nozzle. Meanwhile the droplets may interact with the internal flow. As a consequence, some of the droplets are entrapped in the cavity forming an alumina puddle (slag) instead of being exhausted through the throat. This slag reduces the performances. The aim of the present study is to characterize the slag accumulation process in a simplified model of the MPS P230 motor using primarily optical experimental techniques. Therefore, a 2D-like cold-gas model is designed, which represents the main geometrical features of the real motor (presence of an inhibitor, nozzle and cavity) and allows to approximate non-dimensional parameters of the internal two-phase flow (e.g. Stokes number, volume fraction). The model is attached to a wind-tunnel that provides quasi-axial flow (air) injection. A water spray device in the stagnation chamber realizes the models of the alumina droplets, which are accumulating in the aft-end cavity of the motor. To be able to carry out experimental investigation, at first the the VKI Level Detection and Recording(LeDaR) and Particle Image Velocimetry (PIV) measurement techniques had to be adapted to the two-phase flow condition of the facility. A parametric liquid accumulation assessment is performed experimentally using the LeDaR technique to identify the influence of various parameters on the liquid deposition rate. The obstacle tip to nozzle tip distance (OT2NT) is identified to be the most relevant, which indicates how much a droplet passing just at the inhibitor tip should deviate transversally to leave through the nozzle and not to be entrapped in the cavity. As LeDaR gives no indication of the driving mechanisms, the flow field is analysed experimentally, which is supported by numerical simulations to understand the main driving forces of the accumulation process. A single-phase PIV measurement campaign provides detailed information about the statistical and instantaneous flow structures. The flow quantities are successfully compared to an equivalent 3D unsteady LES numerical model. Two-phase flow CFD simulations suggest the importance of the droplet diameter on the accumulation rate. This observation is confirmed by two-phase flow PIV experiments as well. Accordingly, the droplet entrapment process is described by two mechanisms. The smaller droplets (representing a short characteristic time) appear to follow closely the air-phase. Thus, they may mix with the air-phase of the recirculation region downstream the inhibitor and can be carried into the cavity. On the other hand, the large droplets (representing a long characteristic time) are not able to follow the air-phase motion. Consequently, a large mean velocity difference is found between the droplets and the air-phase using the two-phase flow measurement data. Therefore, due to the inertia of the large droplets, they may fall into the cavity in function of the OT2NT and their velocity vector at the level of the inhibitor tip. Finally, a third mechanism, dripping is identified as a contributor to the accumulation process. In the current quasi axial 2D-like set-up large drops are dripping from the inhibitor. In this configuration they are the main source of the accumulation process. Therefore, additional numerical simulations are performed to estimate the importance of dripping in more realistic configurations. The preliminary results suggest that dripping is not the main mechanism in the real slag accumulation process. However, it may still lead to a considerable contribution to the final amount of slag.
2

Interaction of turbulent structures with ethanol sprays in mixture formation processes in a constant-flow chamber. / Interação das estruturas turbulentas com sprays de etanol nos processos de formação de mistura em uma câmara de fluxo constante.

Berti, Rafael da Cruz Ribeiro 19 June 2018 (has links)
The study in formation and evolution of sprays is essential for developing more detailed physical models and new injection strategies for direct injection internal combustion engines. In the present work, the sprays from a multi-hole injector are evaluated in an effort to characterize the effects of the spray development in a constant surrounding air flow. These interactions are studied in terms of the air turbulence characteristics, the inlet air mass flow and the fuel injection pressure. Ethanol sprays are injected in a constant-flow chamber. The apparatus purpose is to isolate the experiment from the fluid flow properties intrinsic to engine operations, such as instabilities and moving walls. The factors that affects the air-spray interactions were assessed with the air velocity fields in the presence of the ethanol spray. The two-phase particle image velocimetry technique was enhanced to allow measuring in the required experimental conditions. In all conditions, the interaction is based in a pressure gradient formed between the inner and outer regions of the spray. The results indicates a different mechanism when compared to quiescent conditions. The recirculation vortex at the spray border is present only in the initial injection stages. However, the end of injection transient, an instability initiated with the injector needle closing, is still present for these conditions. The interaction mechanism accelerates the velocity distributions towards the spray main boundary. The experiments indicate that the increase of the air mass flow modifies the air penetration velocity but without altering the interaction mechanism characteristics. Higher injection pressures suggests a lower degree of air interaction at the initial instants of the spray development. Turbulent intensity distributions are calculated for the air flow during the injection event. The distributions indicate that the sprays attenuate the turbulent intensity in all conditions, consistent with the observations of the velocity fields. To assess the effects of air turbulence, sets of interchangeable perforated plates are used to limit the integral scales of turbulence. The spectrogram analyses indicate turbulence is reduced not only in the integral scales, but also in all the measured frequency scales. The inlet turbulence integral scales of the air flow have little influence in the spray development. In the turbulence field, the power levels at the end of injection were similar regardless of the inlet turbulence integral scales. / O estudo da formação e evolução dos sprays é essencial para o desenvolvimento de modelos físicos mais detalhados e novas estratégias de injeção para motores de combustão interna de injeção direta. No presente trabalho, os sprays de um injetor multi-furos são avaliados em um esforço para caracterizar os efeitos do desenvolvimento do spray em fluxo de ar constante. Estas interações são estudadas em termos de características de turbulência do ar,do fluxo mássico de ar e da pressão de injeção de combustível. Sprays de etanol são injetados em uma câmara de fluxo constante. O objetivo do aparato é isolar o experimento de propriedades do escoamento intrínsecas ao funcionamento de motores de combustão interna, tais como instabilidades e geometrias móveis. Os fatores que afetam as interações de arspray foram avaliados com os campos de velocidade do ar obtidos na presença de spray. A técnica de velocimetria por imagem de partículas de duas fases foi aprimorada para permitir a medição nas condições experimentais. Em todas as condições, a interação é baseada em um diferencial de pressão formado entre as regiões interna e externa do spray. Os resultados indicam um mecanismo diferente quando comparado com condições quiescentes. O vortex formado na fronteira do spray é observado apenas nos estágios iniciais de injeção. No entanto, o transiente de fim de injeção ainda está presente para essas condições. O mecanismo de interação acelera as distribuições de velocidade em direção à fronteira do jato. Os experimentos indicam que o aumento do fluxo de massa de ar modifica a velocidade de penetração do ar, mas sem alterar as características do mecanismo de interação. Distribuições de intensidade turbulenta são calculadas para o fluxo de ar durante o evento de injeção. As distribuições indicam que os sprays atenuam a intensidade turbulenta em todas as condições, consistente com as observações dos campos de velocidade. Para avaliar os efeitos da turbulência do ar, conjuntos de placas perfuradas intercambiáveis são utilizadas para limitar as escalas integrais de turbulência. As análises do espectrograma indicam que a turbulência é reduzida não apenas nas escalas integrais, mas também em todas as escalas de freqüência medidas. Estas escalas integrais de turbulência do fluxo de ar de entrada têm pouca influência no desenvolvimento do spray. No campo de turbulência, os níveis de potência ao final da injeção foram semelhantes, independentemente das escalas integrais de turbulência de entrada.
3

Interaction of turbulent structures with ethanol sprays in mixture formation processes in a constant-flow chamber. / Interação das estruturas turbulentas com sprays de etanol nos processos de formação de mistura em uma câmara de fluxo constante.

Rafael da Cruz Ribeiro Berti 19 June 2018 (has links)
The study in formation and evolution of sprays is essential for developing more detailed physical models and new injection strategies for direct injection internal combustion engines. In the present work, the sprays from a multi-hole injector are evaluated in an effort to characterize the effects of the spray development in a constant surrounding air flow. These interactions are studied in terms of the air turbulence characteristics, the inlet air mass flow and the fuel injection pressure. Ethanol sprays are injected in a constant-flow chamber. The apparatus purpose is to isolate the experiment from the fluid flow properties intrinsic to engine operations, such as instabilities and moving walls. The factors that affects the air-spray interactions were assessed with the air velocity fields in the presence of the ethanol spray. The two-phase particle image velocimetry technique was enhanced to allow measuring in the required experimental conditions. In all conditions, the interaction is based in a pressure gradient formed between the inner and outer regions of the spray. The results indicates a different mechanism when compared to quiescent conditions. The recirculation vortex at the spray border is present only in the initial injection stages. However, the end of injection transient, an instability initiated with the injector needle closing, is still present for these conditions. The interaction mechanism accelerates the velocity distributions towards the spray main boundary. The experiments indicate that the increase of the air mass flow modifies the air penetration velocity but without altering the interaction mechanism characteristics. Higher injection pressures suggests a lower degree of air interaction at the initial instants of the spray development. Turbulent intensity distributions are calculated for the air flow during the injection event. The distributions indicate that the sprays attenuate the turbulent intensity in all conditions, consistent with the observations of the velocity fields. To assess the effects of air turbulence, sets of interchangeable perforated plates are used to limit the integral scales of turbulence. The spectrogram analyses indicate turbulence is reduced not only in the integral scales, but also in all the measured frequency scales. The inlet turbulence integral scales of the air flow have little influence in the spray development. In the turbulence field, the power levels at the end of injection were similar regardless of the inlet turbulence integral scales. / O estudo da formação e evolução dos sprays é essencial para o desenvolvimento de modelos físicos mais detalhados e novas estratégias de injeção para motores de combustão interna de injeção direta. No presente trabalho, os sprays de um injetor multi-furos são avaliados em um esforço para caracterizar os efeitos do desenvolvimento do spray em fluxo de ar constante. Estas interações são estudadas em termos de características de turbulência do ar,do fluxo mássico de ar e da pressão de injeção de combustível. Sprays de etanol são injetados em uma câmara de fluxo constante. O objetivo do aparato é isolar o experimento de propriedades do escoamento intrínsecas ao funcionamento de motores de combustão interna, tais como instabilidades e geometrias móveis. Os fatores que afetam as interações de arspray foram avaliados com os campos de velocidade do ar obtidos na presença de spray. A técnica de velocimetria por imagem de partículas de duas fases foi aprimorada para permitir a medição nas condições experimentais. Em todas as condições, a interação é baseada em um diferencial de pressão formado entre as regiões interna e externa do spray. Os resultados indicam um mecanismo diferente quando comparado com condições quiescentes. O vortex formado na fronteira do spray é observado apenas nos estágios iniciais de injeção. No entanto, o transiente de fim de injeção ainda está presente para essas condições. O mecanismo de interação acelera as distribuições de velocidade em direção à fronteira do jato. Os experimentos indicam que o aumento do fluxo de massa de ar modifica a velocidade de penetração do ar, mas sem alterar as características do mecanismo de interação. Distribuições de intensidade turbulenta são calculadas para o fluxo de ar durante o evento de injeção. As distribuições indicam que os sprays atenuam a intensidade turbulenta em todas as condições, consistente com as observações dos campos de velocidade. Para avaliar os efeitos da turbulência do ar, conjuntos de placas perfuradas intercambiáveis são utilizadas para limitar as escalas integrais de turbulência. As análises do espectrograma indicam que a turbulência é reduzida não apenas nas escalas integrais, mas também em todas as escalas de freqüência medidas. Estas escalas integrais de turbulência do fluxo de ar de entrada têm pouca influência no desenvolvimento do spray. No campo de turbulência, os níveis de potência ao final da injeção foram semelhantes, independentemente das escalas integrais de turbulência de entrada.
4

Etude par PIV par fluorescence de l’interaction d’un spray avec un écoulement gazeux en aérodynamique contrôlée : application à l’injection directe essence / Study by means of PIV by fluorescence of the interaction between a spray and a gaseous flow in a controlled aerodynamic : application to the gasoline direct injection

Lemetayer, Julien 07 December 2016 (has links)
De nombreux procédés actuels mettent en jeu des écoulements diphasiques (sprays agricoles, pharmaceutiques, peinture...). Néanmoins, la connaissance des mécanismes régissant les interactions entre les phases (entraînement, modification des trajectoires des particules, transfert d'énergie...) est encore incomplète, notamment lors de l'injection directe essence, qui représente le cadre de cette étude. Dans cette étude expérimentale, les dynamiques instantanées des deux phases sont étudiées dans un plan pour mettre en évidence les interactions aérodynamiques entre les phases. Pour ce faire, un diagnostic de FPIV diphasique, utilisant un colorant fluorescent pour chaque phase, est développé afin d'acquérir simultanément des images séparées de chaque phase sur deux caméras indépendantes. Ainsi, les vitesses instantanées et simultanées des deux phases sont mesurées sans recourir à un prétraitement des images. Dans un premier temps, ce diagnostic optique est appliqué à la caractérisation d'une injection dans un gaz au repos. L'injection du spray met en mouvement le gaz par le biais d'un transfert de quantité de mouvement du spray vers le gaz. La dispersion des gouttes du spray et le mélange des deux phases qui résultent de ces transferts d'énergie cinétique dépendent du type de spray et également de la pression d'injection. Dans un second temps, ces interactions sont étudiées dans un moteur monocylindre transparent. La comparaison entre les fonctionnements avec et sans injection indique un impact notable de la présence du spray sur l'aérodynamique interne par le développement de nouvelles structures et la modification des caractéristiques du tumble. L'aérodynamique interne du moteur modifie également le développement du spray en comparaison de l'injection dans un gaz au repos. / Two-phase flows are involved in numerous actual industrial processes (agriculture, pharmacy, painting...). However, the complex interactions between phases (entrainment, particle trajectory modification, energy transfer...) are not well understood, especially for the gasoline direct injection, which represents the context of this study. For this experimental study, instantaneous dynamics of both phases are studied in a plan to highlight the aerodynamic interactions between phases. To achieve that, a two-phase FPIV diagnostic, based on using a fluorescent dye for each phase, is developed to simultaneously acquire separated images of each phase on two independent cameras. Instantaneous and simultaneous velocities of both phases are measured without any image pre-processing. Firstly, this optical diagnostic is applied to the characterisation of a spray injection in a gas at rest. The spray drags the gas by a momentum transfer from spray to gas. The spray droplet dispersion and the mixture between the two phases, which result from this kinetic energy transfer, depend on the spray topology and the injection pressure. Then, these interactions are studied in a transparent monocylinder engine. The comparison between cycles with and without injection reveals a significant impact of the spray presence on the internal aerodynamic through the development of new structures and the modification of tumble characteristics. The internal aerodynamic also modifies the spray development in comparison to the injection in a gas at rest.
5

Two-phase flow investigation in a cold-gas solid rocket motor model through the study of the slag accumulation process

Tóth, Balázs 22 January 2008 (has links)
The present research project is carried out at the von Karman Institute for Fluid Dynamics (Rhode-Saint-Genèse, Belgium) with the financial support of the European Space Agency.<p><p>The first stage of spacecrafts (e.g. Ariane 5, Vega, Shuttle) generally consists of large solid propellant rocket motors (SRM), which often consist of segmented structure and incorporate a submerged nozzle. During the combustion, the regression of the solid propellant surrounding the nozzle integration part leads to the formation of a cavity around the nozzle lip. The propellant combustion generates liquefied alumina droplets coming from chemical reaction of the aluminum composing the propellant grain. The alumina droplets being carried away by the hot burnt gases are flowing towards the nozzle. Meanwhile the droplets may interact with the internal flow. As a consequence, some of the droplets are entrapped in the cavity forming an alumina puddle (slag) instead of being exhausted through the throat. This slag reduces the performances.<p><p>The aim of the present study is to characterize the slag accumulation process in a simplified model of the MPS P230 motor using primarily optical experimental techniques. Therefore, a 2D-like cold-gas model is designed, which represents the main geometrical features of the real motor (presence of an inhibitor, nozzle and cavity) and allows to approximate non-dimensional parameters of the internal two-phase flow (e.g. Stokes number, volume fraction). The model is attached to a wind-tunnel that provides quasi-axial flow (air) injection. A water spray device in the stagnation chamber realizes the models of the alumina droplets, which are accumulating in the aft-end cavity of the motor.<p><p>To be able to carry out experimental investigation, at first the the VKI Level Detection and Recording(LeDaR) and Particle Image Velocimetry (PIV) measurement techniques had to be adapted to the two-phase flow condition of the facility.<p><p>A parametric liquid accumulation assessment is performed experimentally using the LeDaR technique to identify the influence of various parameters on the liquid deposition rate. The obstacle tip to nozzle tip distance (OT2NT) is identified to be the most relevant, which indicates how much a droplet passing just at the inhibitor tip should deviate transversally to leave through the nozzle and not to be entrapped in the cavity.<p><p>As LeDaR gives no indication of the driving mechanisms, the flow field is analysed experimentally, which is supported by numerical simulations to understand the main driving forces of the accumulation process. A single-phase PIV measurement campaign provides detailed information about the statistical and instantaneous flow structures. The flow quantities are successfully compared to an equivalent 3D unsteady LES numerical model.<p><p>Two-phase flow CFD simulations suggest the importance of the droplet diameter on the accumulation rate. This observation is confirmed by two-phase flow PIV experiments as well. Accordingly, the droplet entrapment process is described by two mechanisms. The smaller droplets (representing a short characteristic time) appear to follow closely the air-phase. Thus, they may mix with the air-phase of the recirculation region downstream the inhibitor and can be carried into the cavity. On the other hand, the large droplets (representing a long characteristic time) are not able to follow the air-phase motion. Consequently, a large mean velocity difference is found between the droplets and the air-phase using the two-phase flow measurement data. Therefore, due to the inertia of the large droplets, they may fall into the cavity in function of the OT2NT and their velocity vector at the level of the inhibitor tip.<p><p>Finally, a third mechanism, dripping is identified as a contributor to the accumulation process. In the current quasi axial 2D-like set-up large drops are dripping from the inhibitor. In this configuration they are the main source of the accumulation process. Therefore, additional numerical simulations are performed to estimate the importance of dripping in more realistic configurations. The preliminary results suggest that dripping is not the main mechanism in the real slag accumulation process. However, it may still lead to a considerable contribution to the final amount of slag.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0414 seconds